Skip to main content

Abstract

This chapter reviews microbial biobutanol production and discusses the possibilities, remaining challenges, and prospects of biobutanol. The chapter also discusses the use of lignocellulosic biomass and development of mutant strains having higher butanol yield, selectivity, and tolerance to inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe A, Inoue A, Usami R, Moriya K, Horikoshi K (1995) Properties of a newly isolated marine bacterium that can degrade polyaromatic hydrocarbons in the presence of organic solvents. J Mar Biotechnol 2:182–186

    CAS  Google Scholar 

  • Afschar AS, Biebl H, Schaller K, Schügerl K (1985) Production of acetone and butanol by Clostridium acetobutylicum in continuous culture with cell recycle. Appl Microbiol Biotechnol 22(6):394–398

    Article  CAS  Google Scholar 

  • Annous BA, Blaschek HP (1990) Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 56:2559–2561

    PubMed  PubMed Central  CAS  Google Scholar 

  • Arifin Y, Tanudjaja E, Dimyati A, Pinontoan R (2014) A second generation biofuel from cellulosic agricultural by-product fermentation using Clostridium species for electricity generation. Energy Procedia 47:310–315

    Article  CAS  Google Scholar 

  • Atsumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 45:186–190

    Google Scholar 

  • Badr HR, Toledo R, Hamdy MK (2001) Continuous acetone ethanol butanol fermentation by immobilized cells of Clostridium acetobutylicum. Biomass Bioenergy 20:119–132

    Article  CAS  Google Scholar 

  • Bahl H, Andersch W, Gottschalk G (1982) Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. Appl Microbiol Biotechnol 15:201–205

    Article  CAS  Google Scholar 

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31(8–9):871–888

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237–245

    Article  CAS  PubMed  Google Scholar 

  • Beesch SC (1952) Acetone–butanol fermentation of sugars. Ind Eng Chem 44:1677–1682

    Article  CAS  Google Scholar 

  • Bennett GN, Scotcher MC (2007) Blocking sporulation by inhibiting SpoIIE. US Patent No 20070020740

    Google Scholar 

  • Bentley RW (2002) Global oil & gas depletion: an overview. Energ Policy 30(3):189–205

    Article  Google Scholar 

  • Bibra M, Wang J, Squillace P, Pinkelman R, Papendick S, Schneiderman S, Wood V, Amar V, Kumar S, Salem D, Sani R (2014) Biofuels and value-added products from extremophiles. In: Nawani N, Khetmalas M, Razdan PN, Pandey A (eds) Advances in biotechnology. IK International Publishing House, New Delhi, pp 17–51

    Google Scholar 

  • Blaschek H, Annous, B, Formanek J, Chen CK (2002) Method of producing butanol using a mutant strain of Clostridium beijerinckii. US6358717

    Google Scholar 

  • De Carvalho CC, Da Cruz AA, Pons NM, Pinheiro HM, Cabral JM, Da Fonseca MM, Ferreira BS, Fernandes P (2004) Mycobacterium sp. Rhodococcus erythropolis and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech 15:215–222

    Article  Google Scholar 

  • Demain A (2009) Biosolutions to the energy problem. J Ind Microbiol Biotechnol 36:319–332

    Article  CAS  PubMed  Google Scholar 

  • Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65:936–994

    PubMed  PubMed Central  CAS  Google Scholar 

  • Donaldson GK, Huang LL, Maggio-Hall LA, Nagarajan V, Nakamura CE, Suh W (2008) Fermentive production of four carbon alcohols. US20080182308

    Google Scholar 

  • Durre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648

    Article  CAS  Google Scholar 

  • Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Article  CAS  PubMed  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA 101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603

    Article  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004a) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658

    Article  CAS  PubMed  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004b) Butanol fermentation research: upstream and downstream manipulations. Chem Rec 4:305–314

    Article  CAS  PubMed  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2005) Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J Biotechnol 115:179–187

    Article  CAS  PubMed  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007) Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem 42:34–39

    Article  CAS  Google Scholar 

  • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184:821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortman JL, Chhabra S, Mukhopadhyay A (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381

    Article  CAS  PubMed  Google Scholar 

  • Gabriel CL, Crawford FM (1930) Development of the butyl-acetonic fermentation industry. Ind Eng Chem 22:1163–1165

    Article  CAS  Google Scholar 

  • Garcia V, Pakkila J, Ojamo H, Muurinen E, Keiski R (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sust Energ Rev 15:964–980

    Article  CAS  Google Scholar 

  • George HA, Johnson JL, Moore WE, Holdeman LV, Chen JS (1983) Acetone isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl Environ Microbiol 45(3):1160–1163

    PubMed  PubMed Central  CAS  Google Scholar 

  • Girbal L, Soucaille P (1998) Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol 16:11–16

    Article  CAS  Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485

    Article  CAS  PubMed  Google Scholar 

  • Gottschal JC, Morris JG (1981) Non-production of acetone and butanol by Clostridium acetobutylicum during glucose- and ammonium limitation in continuous culture. Biotechnol Lett 3:525–530

    Article  CAS  Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism. Springer, New York, pp 208–282

    Google Scholar 

  • Grobben NG, Eggink G, Petrus Cuperus F, Huizing HJ (1993) Production of acetone, butanol and ethanol (ABE) from potato wastes: fermentation with integrated membrane extraction. Appl Microbiol Biotechnol 39(4–5):494–498

    Article  CAS  Google Scholar 

  • Harris J, Mulder R, Kell DB, Walter RP, Morris JG (1986) Solvent production by Clostridium pasteurianum in media of high sugar content. Biotechnol Lett 8(12):889–892

    Article  CAS  Google Scholar 

  • Hermann M, Fayolle F, Marchal R (1988) Production of clostridium acetobutylicum mutants of high butanol and acetone productivity, the resultant mutants and the use of these mutants in the joint production of butanol and acetone. US4757010

    Google Scholar 

  • Hongo M (1960) Process for producing butanol by fermentation. US Patent No 2945786

    Google Scholar 

  • Hsu TA (1996) Handbook on bioethanol: production and utilization, Applied energy technology series. Taylor & Francis, Washington, DC, p 179

    Google Scholar 

  • Huang WC, Ramey DE, Yang ST (2004) Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl Biotechem Biotechnol 115:887–898

    Article  Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316

    Article  CAS  PubMed  Google Scholar 

  • Jain MK, Beacom D, Datta R (1993) Mutant strain of C. acetobutylicum and process for making butanol. US5192673

    Google Scholar 

  • Johnson JL, Chen JS (1995) Taxonomic relationships among strains of Clostridium acetobutylicum and other phenotypically similar organisms. FEMS Microbiol Rev 17:233–240

    Article  CAS  Google Scholar 

  • Johnson JL, Toth J, Santiwatanakul S, Chen JS (1997) Culture of “Clostridium acetobutylicum” from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA–DNA reassociation. Int J Syst Bacteriol 47:420–424

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Keis S (1995) Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol Rev 17(3):223–232

    Article  CAS  Google Scholar 

  • Keis S, Benett C, Ward VK, Jones DT (1995) Taxonomy and phylogeny of industrial solvent producing clostridia. Int J Syst Bacteriol 45:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kharkwal S, Karimi IA, Chang MW, Lee DY (2009) Strain improvement and process development for biobutanol production. Recent Pat Biotechnol 3:202–210

    Article  CAS  PubMed  Google Scholar 

  • Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88:1999–2012

    Article  CAS  Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielson LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228

    Article  CAS  PubMed  Google Scholar 

  • Liew ST, Arbakariya A, Rosfarizan M, Raha AR (2005) Production of solvent (acetone–butanol–ethanol) in continuous fermentation by Clostridium saccharobutylicum DSM 13864 using gelatinised Sago starch as a carbon source. Malaysian J Microbiol 2(2):42–45

    Google Scholar 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Article  CAS  PubMed  Google Scholar 

  • Maddox IS, Qureshi N, Thomson KR (1995) Production of acetone–butanol–ethanol from concentrated substrates using Clostridium acetobutylicum in an integrated fermentation-product removal process. Process Biochem 30(3):209–215

    CAS  Google Scholar 

  • Madeliene RL, Maria LDWTA, Alexander BVM (2008) Butanol production in a eukaryotic cell. WO2008052991

    Google Scholar 

  • Mariano AP, Costa CBB, Angelis DF, Filho FM, Atala DIP, Maciel MRW (2009) Optimisation of a continuous flash fermentation for butanol production using the response surface methodology. Chem Eng Res Des 88:562–571

    Article  CAS  Google Scholar 

  • Mehaia MA, Cheryan M (1986) Lactic acid from acid whey permeate in a membrane recycle bioreactor. Enzym Microb Technol 8(5):289–292

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:1986–1993

    Article  CAS  PubMed  Google Scholar 

  • Napoli F, Olivieri G, Marzocchella A, Russo ME, Salatino P (2010) Production of butanol in a continuous packed bed reactor of Clostridium acetobutylicum. Chem Eng Trans 20:193–198

    Google Scholar 

  • Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL (2009) Alternative Engineering butanol production platforms in heterologous bacteria. Metab Eng 11:262–273

    Article  CAS  PubMed  Google Scholar 

  • Nookeaw I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, Nielsen J, Bhumiratana S (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2:71

    Article  CAS  Google Scholar 

  • Papoutsakis ET, Lee SY, Park JH (2008) Method for preparing butanol through butyryl-coa as an intermediate using bacteria. WO2008072920

    Google Scholar 

  • Pierrot P, Fick M, Engasser JM (1986) Continuous acetone-butanol fermentation with high productivity by cell ultrafiltration and recycling. Biotechnol Lett 8(4):253–256

    Article  CAS  Google Scholar 

  • Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins dos Santos VA (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4:e1000210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi N, Blaschek HP (2000) Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl Biochem Biotechnol 84–86:225–235

    Article  PubMed  Google Scholar 

  • Qureshi N, Maddox IS (1995) Continuous production of acetone–butanol–ethanol using immobilised cells of Clostridium acetobutylicum and integration with product removal by liquid–liquid extraction. J Ferment Bioeng 80(2):185–189

    Article  CAS  Google Scholar 

  • Qureshi N, Meagher MM, Huang J, Hutkins RW (2001) Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 187:93–102

    Article  CAS  Google Scholar 

  • Qureshi N, Lai LL, Blaschek HP (2004) Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod Process 82:164–173

    Article  CAS  Google Scholar 

  • Qureshi N, Hughes S, Maddox IS, Cotta MA (2005) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst Eng 27:215–222

    Article  CAS  PubMed  Google Scholar 

  • Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427

    Article  CAS  PubMed  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008a) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part I – batch fermentation. Biomass Bioenergy 32:168–175

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Cotta MA (2008b) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part II –fed-batch fermentation. Biomass Bioenergy 32:176–183

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: part I – use of barley straw hydrolysate. Biomass Bioenergy 34:559–565

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Ramos-González M-I, Olson M, Gatenby AA, Mosqueda G, Manzanera M, Campos MJ, Vichez S, Ramos JL (2002) Cross-regulation between a novel two-component signal transduction system for catabolism of toluene in Pseudomonas mendocina and the TodST system from Pseudomonas putida. J Bacteriol 184(24):7062–7067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samsuri M, Gozan M, Prasetya B, Nasikin M (2009) Enzymatic hydrolysis of lignocellulosic bagasse for bioethanol production. J Biotechnol Res Tropic Region 2:1–5

    Google Scholar 

  • Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Duque E, Rojas A, Godoy P, Delgado A, Hurtado A, Cronan J, Ramos JL (2004) Fatty acid biosynthesis is involved in solvent tolerance in Pseudomonas putida DOT-T1E. Environ Microbiol 6:416–423

    Article  CAS  PubMed  Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320

    Article  CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed  PubMed Central  CAS  Google Scholar 

  • Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for n-butanol production. Microb Cell Factories 7:36

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fedbatch culture with pH-stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 98(4):263–268

    Article  CAS  PubMed  Google Scholar 

  • Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uvini G, Peter M, Matthew WP, Urano J, Reid M, Renny F (2008) Butanol production by metabolically engineered yeast. WO2008080124

    Google Scholar 

  • Wang Z, Keshwani DR, Redding AP, Cheng JJ (2010) Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresour Technol 101:3583–3585

    Article  CAS  PubMed  Google Scholar 

  • Welch RW, Rudolph FB, Papoutsakis ET (1989) Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824). Arch Biochem Biophys 273:309–318

    Article  CAS  PubMed  Google Scholar 

  • Westhuizen AVD, Jones DT, Woods DR (1982) Autolytic activity and butanol tolerance of Clostridium acetobutylicum. Appl Environ Microbiol 44(6):1277–1281

    Google Scholar 

  • Whitfield MB, Chinn MS, Veal MW (2012) Processing of materials derived from sweet sorghum for biobased products. Ind Crop Prod 37:362–375

    Article  CAS  Google Scholar 

  • Yan Q, Wang A, Yu W, Wang L (2009) Development strategies of biofuel in China. In: International conference on energy and environment technology, IEEE computer society, vol 1, pp 588–593

    Google Scholar 

  • Zhang Z, Lohr L, Escalante C, Wetzstein M (2010) Food versus fuel: what do prices tell us? Energ Policy 38:445–451

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the Director of the National Institute of Oceanography (CSIR), Goa (India), for facilities and encouragement and Dr. N. Ramaiah, Head, BOD for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhee Khandeparker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khandeparker, R., Sani, R.K. (2018). Biobutanol Production Using Recombinant Microorganisms. In: Sani, R., Krishnaraj Rathinam, N. (eds) Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Cham. https://doi.org/10.1007/978-3-319-74459-9_3

Download citation

Publish with us

Policies and ethics