Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MA (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130:411–421

    Article  CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  PubMed Central  CAS  Google Scholar 

  • Anterrieu S, Quadri L, Geurkink B, Dinkla I, Bengtsson S, Arcos-Hernandez M, Alexandersson T, Morgan-Sagastume F, Karlsson A, Hjort M, Karabegovic L, Magnusson P, Johansson P, Christensson M, Werker A (2014) Integration of biopolymer production with process water treatment at a sugar factory. New Biotechnol 31:308–323

    Article  CAS  Google Scholar 

  • Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220

    Article  CAS  PubMed  Google Scholar 

  • Arcos-Hernández MV, Laycock B, Donose BC, Pratt S, Halley P, Al-Luaibi S, Werker A, Lant PA (2013) Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV). Eur Polym J 49:904–913

    Article  CAS  Google Scholar 

  • Arumugam A, Sandhya M, Ponnusami V (2014) Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake. Bioresour Technol 164:170–176

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Jana K, Haldar S, Bhowmic A, Mukhopadhyay UK, De S, Mukherjee J (2015) Integration of poly-3-(hydroxybutyrate-co-hydroxyvalerate) production by Haloferax mediterranei through utilization of stillage from rice-based ethanol manufacture in India and its techno-economic analysis. World J Microbiol Biotechnol 31:717–727

    Article  CAS  PubMed  Google Scholar 

  • Bonartsev AP, Myshina VL, Nikolaeva DA, Furina EK, Makhina TA, Livshits VA, Boskhomdzhiev AP, Ivanov EA, Iordanskii AL, Bonartseva GA (2007) Biosynthesis, biodegradation, and application of poly(3-hydroxybutyrate) and its copolymers – natural polyesters produced by diazotrophic bacteria. In: Méndez-Villas A (ed) Communicating current research and educational topics and trends in applied microbiology. FORMATEX Microbiology Series, vol 1. FORMATEX, Badajoz, pp 295–307

    Google Scholar 

  • Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161

    Article  CAS  PubMed  Google Scholar 

  • Braunegg G, Koller M, Hesse PJ, Kutschera C, Bona R, Hermann C, Horvat P, Neto J, Dos Santos Pereira L (2007) Production of plastics from waste derived from agrofood industry. In: Graziani M, Fornasiero P (eds) Renewable resources and renewable energy: a global challenge. CRC Press, Boca Raton, pp 119–135

    Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  CAS  PubMed  Google Scholar 

  • Cesário MT, Raposo RS, de Almeida MCMD, van Keulen F, Ferreira BS, Telo JP, da Fonseca MMR (2014) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone. Int J Biol Macromol 71:59–67

    Article  CAS  PubMed  Google Scholar 

  • Chee J, Yoga S, Lau N, Ling S, Abed RMM, Sudesh K (2010) Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. In: Méndez-Villas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. FORMATEX Microbiology Series, vol 2. FORMATEX, Badajoz, pp 1395–1404

    Google Scholar 

  • Chen G (2010) Introduction of bacterial plastics PHA, PLA, PBS, PE, PTT, and PPP. In: Chen G (ed) Plastics from bacteria. Microbiology monographs, vol 12. Springer, Heidelberg, pp 1–16

    Chapter  Google Scholar 

  • Ciesielski S, Mozejko J, Pisutpaisal N (2015) Plant oils as promising substrates for polyhydroxyalkanoates production. J Clean Prod 106:408–421

    Article  CAS  Google Scholar 

  • Cui B, Huang S, Xu F, Zhanq R, Zhanq Y (2015) Improved productivity of poly(3-hydroxybutyrate) (PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Appl Microbiol Biotechnol 99:6009–6019

    Article  CAS  PubMed  Google Scholar 

  • Danis O, Ogan A, Tatlican P, Attar A, Cakmakci E, Mertoglu B, Birbir M (2015) Preparation of poly(3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery. Extremophiles 19:515–524

    Article  CAS  PubMed  Google Scholar 

  • Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, Guzik M, Shaikh H, Duane G, Gupta VK, Tuohy MG, Padamatti RB, Casey E, O’Connor KE (2013) Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour Technol 150:202–209

    Article  CAS  PubMed  Google Scholar 

  • Di Donato P, Fiorentino G, Anzelmo G, Tommonaro G, Nicalous B, Poli A (2011) Re-use of vegetable wastes as cheap substrates for extremophile biomass production. Waste Biomass Valor 2:103–111

    Article  CAS  Google Scholar 

  • Dimou C, Kopsahelis N, Papadaki A, Papanikolaoua S, Kookos IK, Mandalaa I, Koutinasa AA (2015) Wine lees valorisation: biorefinery development including production of a generic fermentation feedstock employed for poly(hydroxybutyrate) synthesis. Food Res Int 73:81–87

    Article  CAS  Google Scholar 

  • Dionisi D, Garucci G, Papini MP, Riccardi C, Majone M, Carrasco F (2005) Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res 39:2076–2084

    Article  CAS  PubMed  Google Scholar 

  • Don TM, Chen CW, Chan TH (2006) Preparation and characterization of poly(hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomater Sci Polym Ed 17:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Du C, Sabirova J, Soetaert W, Lin SKC (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25

    CAS  Google Scholar 

  • Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F (1986) Accumulation of poly(β-hydroxybutyrate) by Halobacteria. Appl Environ Microbiol 51:214–216

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gomaa EZ (2014) Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Braz Arch Biol Technol 57:145–154

    Article  CAS  Google Scholar 

  • Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73:6058–6065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Hou J, Liu H, Cai S, Feng B, Zhou J, Xiang H (2010) Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol 76:7811–7819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013) Archaeal production of polyhydroxyalkanoate (PHA) Co- and terpolyesters from biodiesel industry-derived by-products. Archaea 2013:1–10

    Article  CAS  Google Scholar 

  • Hezayen FF, Tindall BJ, Steinbüchel A, Rehm BH (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280

    PubMed  CAS  Google Scholar 

  • Hezayen FF, Gutierrez MC, Steinbüchel A, Tindall BJ, Rehm BH (2010) Halopiger aswanensis sp. nov., a polymer producing and extremely halophilic archaeon isolated from hypersaline soil. Int J Syst Evol Microbiol 60:633–637

    Article  CAS  PubMed  Google Scholar 

  • Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706

    Article  CAS  PubMed  Google Scholar 

  • Insomphun C, Mifune J, Orita I, Numata K, Nakamura S, Fukui T (2014) Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil. J Biosci Bioeng 117:184–190

    Article  CAS  PubMed  Google Scholar 

  • Kachrimanidou V, Kopsahelis N, Papanikolaou S, Kookos IK, De Bruyn M, Clark JH, Koutinas AA (2014) Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour Technol 172:121–130

    Article  CAS  PubMed  Google Scholar 

  • Kirk RG, Ginzburg M (1972) Ultrastructure of two species of Halobacterium. J Ultrastruct Res 41:80–94

    Article  CAS  PubMed  Google Scholar 

  • Koller M (2015) Recycling of waste streams of the biotechnological poly(hydroxyalkanoate) production by Haloferax mediterranei on whey. Int J Polym Sci 2015:1–8

    Article  CAS  Google Scholar 

  • Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565

    Article  CAS  PubMed  Google Scholar 

  • Koller M, Hesse PJ, Bona R, Kutschera C, Atlic A, Braunegg G (2007) Biosynthesis of high quality polyhydroxyalkanoate co- and terpolyesters for potential medical application by the archaeon Haloferax mediterranei. Macromol Symp 253:33–39

    Article  CAS  Google Scholar 

  • Koller M, Atlić A, Dias M, Reiterer R, Braunegg G (2010) Microbial PHA production from waste raw materials. In: Chen G (ed) Plastics from bacteria. Microbiology monographs, vol 12. Springer, Heidelberg, pp 85–119

    Chapter  Google Scholar 

  • Legat A, Gruber C, Zanggeri K, Wanner G, Stan-Lotter H (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillo JC, Rodriguez-Valera F (1990) Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56:2517–2521

    PubMed  PubMed Central  Google Scholar 

  • Linares-Pastén JA, Sabet-Azad R, Pessina L, Sardari RR, Ibrahim MH, Hatti-Kaul R (2015) Efficient poly(3-hydroxypropionate) production from glycerol using Lactobacillus reuteri and recombinant Escherichia coli harboring L. reuteri propionaldehyde dehydrogenase and Chromobacterium sp. PHA synthase genes. Bioresour Technol 180:172–176

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Tappel RC, Nomura CT (2009) Mini-review: Biosynthesis of poly(hydroxyalkanoates). Polym Rev 49:226–248

    Article  CAS  Google Scholar 

  • Martinez GA, Bertin L, Scoma A, Fava F (2015) Production of polyhydroxyalkanoates from dephenolised and fermented olive mill wastewaters by employing a pure culture of Cupriavidus necator. Biochem Eng J 97:92–100

    Article  CAS  Google Scholar 

  • Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MA (2014) Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 71:117–123

    Article  CAS  PubMed  Google Scholar 

  • Moita R, Freches A, Lemos PC (2014) Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 58:9–20

    Article  CAS  PubMed  Google Scholar 

  • Moralejo-Gárate H, Kleerebezem R, Mosquera-Corral A, Campos JL, Palmeiro-Sánchez T, van Loosdrecht MC (2014) Substrate versatility of polyhydroxyalkanoate producing glycerol grown bacterial enrichment culture. Water Res 66:190–198

    Article  CAS  PubMed  Google Scholar 

  • Mozejko J, Ciesielski S (2013) Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. J Biosci Bioeng 116:485–492

    Article  CAS  PubMed  Google Scholar 

  • Mozumder MSI, Garcia-Gonzales L, De Wever H, Volcke EI (2015) Poly(3-hydroxybutyrate) (PHB) production from CO2: model development and process optimization. Biochem Eng J 98:107–116

    Article  CAS  Google Scholar 

  • Nicolaus B, Lama L, Esposito E, Manca MC, Improta R, Bellitti MR, Duckworth AW, Grant WD, Gambacorta A (1999) Haloarcula spp able to biosynthesize exo- and endopolymers. J Ind Microbiol Biotechnol 23:489–496

    Article  CAS  Google Scholar 

  • Nikodinovic-Runic J, Guzik M, Kenny ST, Babu R, Werker A, O’Conner KE (2013) Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 84. Elsevier Academic Press, San Diego, pp 139–200

    Google Scholar 

  • O’Connor S, Szwej E, Nikodinovic-Runic J, O'Connor A, Byrne AT, Devocelle M, O’Donovan N, Gallagher WM, Babu R, Kenny ST, Zinn M, Zulian QR, O'Connor KE (2013) The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials 34:2710–2718

    Article  CAS  PubMed  Google Scholar 

  • Oh YH, Lee SH, Jang YA, Choi JW, Hong KS, Yu JH, Shin J, Song BK, Mastan SG, David Y, Baylon MG, Lee SY, Park SJ (2015) Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresour Technol 181:283–290

    Article  CAS  PubMed  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Pittman T, Steinmetz H (2014) Polyhydroxyalkanoate production as a side stream process on a municipal waste water treatment plant. Bioresour Technol 167:297–302

    Article  CAS  Google Scholar 

  • Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea 2011:1–13

    Article  CAS  Google Scholar 

  • Posada JA, Higuita JC, Cardona CA (2011) Optimization on the use of crude glycerol from the biodiesel production to obtain poly-3-hydroxybutyrate. In: Proceedings of world renewable energy congress, Sweden. Linköping electronic conference proceedings, 57, pp 327–334

    Google Scholar 

  • Pramanik A, Mitra A, Arumugam M, Bhattacharyya A, Sadhukhan S, Ray A, Haldar S, Mukhopadhyay UK, Mukherjee J (2012) Utilization of vinasse for the production of polyhydroxybutyrate by Haloarcula marismortui. Folia Microbiol 57:71–79

    Article  CAS  Google Scholar 

  • Queirós D, Rosetti S, Serafim LS (2014) PHA production by mixed cultures: a way to valorize wastes from pulp industry. Bioresour Technol 157:197–205

    Article  CAS  PubMed  Google Scholar 

  • Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Ribera RG, Monteoliva-Sanchez M, Ramos-Cormenzana A (2001) Production of polyhydroxyalkanoates by Pseudomonas putida KT2442 harboring pSK2665 in wastewater from olive oil mills (alpechín). Electron J Biotechnol 4:116–119

    Google Scholar 

  • Rodríguez-Contreras A, Koller M, Dias MMS, Calafell-Monforte M, Braunegg G, Marqués-Calvo MS (2015) Influence of glycerol on poly(3-hydroxybutyrate) production by Cupriavidus necator and Burkholderia sacchari. Biochem Eng J 94:50–57

    Article  CAS  Google Scholar 

  • Salgaonkar BB, Mani K, Braganca JM (2013) Accumulation of polyhydroxyalkanoates by halophilic archaea isolated from traditional solar salterns of India. Extremophiles 17:787–795

    Article  CAS  PubMed  Google Scholar 

  • Shirastav A, Kim HY, Kim YR (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int 2013:1–12

    Article  CAS  Google Scholar 

  • Silva LF, Taciro MK, Michelin Ramos ME, Carter JM, Pradella JG, Gomez JG (2004) Poly-3-hydroxybutyrate (PHB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biotechnol 31:245–254

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Tan GYA, Chen CL, Li L, Ge L, Wang L, Razad IMN, Li Y, Zhao L, Mo Y, Wang JY (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754

    Article  CAS  Google Scholar 

  • Van-Thuoc D, Huu-Phong T, Minh-Khuong D, Hatti-Kaul R (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol 175:3120–3132

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94

    Article  CAS  PubMed  Google Scholar 

  • Wainø M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190

    Article  PubMed  Google Scholar 

  • Wong HH, Lee SY (1998) Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinant Escherichia coli. Appl Microbiol Biotechnol 50:30–33

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Huang H, Hu G, Chen J, Ho KP, Chen GQ (2001) Production of poly-3-hydroxybutrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie Van Leeuwenhoek 80:111–118

    Article  CAS  PubMed  Google Scholar 

  • Xiao XQ, Zhao Y, Chen GQ (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616

    Article  CAS  PubMed  Google Scholar 

  • Xu XW, Ren PG, Liu SJ, Wu M, Zhou J (2005) Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun Mountain in Xinjiang, China. Int J Syst Evol Microbiol 55:1311–1314

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Wang J, Zhang S, Tang X, Shang G, Peng Q, Wang R, Cai X (2014) The properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and its applications in tissue engineering. Curr Stem Cell Res Ther 9:215–222

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1432–1442

    Google Scholar 

  • Zhang M, Wu H, Chen H (2014) Coupling of polyhydroxyalkanoate production with volatile fatty acid from food wastes and excess sludge. Process Saf Environ Prot 92:171–178

    Article  CAS  Google Scholar 

Further Reading

  • Koller M (ed) (2016) Recent advances in biotechnology, Vol 1, Microbial biopolyester production, performance and processing microbiology, feedstocks, and metabolism. Bentham Science

    Google Scholar 

  • Koller M (ed) (2016) Recent advances in biotechnology, Vol 2, Microbial polyester production, performance and processing bioengineering, characterization, and sustainability. Bentham Science

    Google Scholar 

  • Kalia VC (2015) Microbial factories, Vol 2, Biodiversity, biopolymers, bioactive molecules. Springer

    Google Scholar 

Download references

Acknowledgment

The authors are thankful to Dr. Martin Louis Duncan for skillfully proofreading our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özkan Danış .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danış, Ö., Ogan, A., Birbir, M. (2018). Polyhydroxyalkanoates Production from Renewable and Waste Materials Using Extremophiles/Recombinant Microbes. In: Sani, R., Krishnaraj Rathinam, N. (eds) Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Cham. https://doi.org/10.1007/978-3-319-74459-9_11

Download citation

Publish with us

Policies and ethics