Skip to main content

Bioprospecting of Extremophiles for Biotechnology Applications

  • Chapter
  • First Online:

Abstract

This chapter aims to acquaint the readers with basic concepts about extremophiles, extremophilic bioprocesses, and their advantages over other chemical and biological systems. The chapter introduces the concept of extremophiles and extremophilic bioprocesses for wide range of biotechnological applications. Finally, the chapter addresses the applications of extremophiles in different sectors such as bioenergy, bioelectrochemical systems, bioremediation, and production of value-added products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu Al-Soud W, Rådström P (1998) Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol 64(10):3748–3753

    PubMed  PubMed Central  CAS  Google Scholar 

  • Acharya S, Chaudhary A (2012) Bioprospecting thermophiles for cellulase production, a review. Braz J Microbiol 43(3):844–856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4(1):117–139. https://doi.org/10.3390/biom4010117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis JB (2002) Catalysis and the use of energy by cells. In: Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Amaretti A, Raimondi S, Sala M et al (2010) Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Factor 9:73

    Google Scholar 

  • Amarouche-Yala S, Benouadah A, El Ouahab Bentabet A, López-García P (2014) Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs. Extremophiles 18(6):1035–1047

    Article  PubMed  CAS  Google Scholar 

  • Anderson IJ, DasSarma P, Lucas S et al (2016) Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34. Stand Genomic Sci 11(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrea A, Stierle Donald B, Stierle TG, Mou TC, Antczak C, Djaballah H (2015) Azaphilones from an acid mine extremophile strain of a Pleurostomophora sp. J Nat Prod 78(12):2917–2923

    Article  CAS  Google Scholar 

  • Bell TAS, Prithiviraj B, Wahlen BD, Fields MW, Peyton BM (2015) A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities. Front Microbiol 6:1480. https://doi.org/10.3389/fmicb.2015.01480

    Article  PubMed  Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759

    Article  PubMed  CAS  Google Scholar 

  • Bishop JL, Schelble RT, McKay CP, Brown AJ, Perry KA (2011) Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates. Int J Astrobiol 10(04):3

    Article  CAS  Google Scholar 

  • Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38(3):393–448

    Article  PubMed  CAS  Google Scholar 

  • Cha S, Srinivasan S, Seo T, Kim MK (2014) Deinococcus radiotolerans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Antonie Van Leeuwenhoek 105(1):229–235

    Article  PubMed  CAS  Google Scholar 

  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100(4):1648–1658

    Article  PubMed  CAS  Google Scholar 

  • Chen KS, Lin YS, Yang SS (2007) Application of thermotolerant microorganisms for biofertilizer preparation. J Microbiol Immunol Infect 40(6):462–473

    PubMed  CAS  Google Scholar 

  • Cheng L, Shi S, Li Q, Chen J, Zhang H, Lu Y (2014) Progressive degradation of crude oil n-Alkanes coupled to methane production under mesophilic and thermophilic conditions. PLoS ONE 9(11):e113253. https://doi.org/10.1371/journal.pone.0113253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coker JA (2016) Extremophiles and biotechnology: current uses and prospects. F1000Research 5, F1000 Faculty Rev-396. doi: https://doi.org/10.12688/f1000research.7432.1

    Article  Google Scholar 

  • Cooper GM (2000) The cell: a molecular approach. In: The central role of enzymes as biological catalysts, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392(6674):353–358

    Article  PubMed  CAS  Google Scholar 

  • Dhiman SS, David A, Shrestha N, Johnson GR, Benjamin KM, Gadhamshetty V, Sani RK (2017) Conversion of raw and untreated disposal into ethanol. Bioresour Tech 244(Pt 1):733

    Article  CAS  Google Scholar 

  • Dopson M, Ni G, Sleutels TH (2016) Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol Rev 40(2):164–181

    Article  PubMed  CAS  Google Scholar 

  • Fardeau ML, Magot M, Patel BK, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50(6):2141–2149

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Sonnet P, Gerday C (1995) The beta-lactamase secreted by the antarctic psychrophile Psychrobacter immobilis A8. Appl Environ Microbiol 61(12):4474–4476

    PubMed  PubMed Central  CAS  Google Scholar 

  • Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway de Macario E, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Fuciños P, González R, Atanes E, Sestelo AB, Pérez-Guerra N, Pastrana L, Rúa ML (2012) Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27. Methods Mol Biol 861:239–266

    Article  PubMed  CAS  Google Scholar 

  • Gelzo M, Lamberti A, Spano G, Dello Russo A, Corso G, Masullo M (2014) Sterol and steroid catabolites from cholesterol produced by the psychrophile Pseudoalteromonas haloplanktis. J Mass Spectrom 49(9):947–951

    Article  PubMed  CAS  Google Scholar 

  • Golden JS, Handfield RB, Daystar J, McConnell TE (2015) An economic impact analysis of the U.S. biobased products industry. A report to the congress of the United States of America, a joint publication of the Duke Center for Sustainability & Commerce and the Supply Chain Resource Cooperative at North Carolina State University

    Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7(9):1277–1288

    Article  PubMed  CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenita A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Article  Google Scholar 

  • Hamilton TL, Lange RK, Boyd ES, Peters JW (2011) Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming. Environ Microbiol 13(8):2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Hao C, Wei P, Pei L, Du Z, Zhang Y, Lu Y, Dong H (2017) Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China. Environ Pollut 223:507–516

    Article  PubMed  CAS  Google Scholar 

  • Hawkins AS, Han Y, Lian H, Loder AJ, Menon AL, Iwuchukwu IJ et al (2011) Extremely thermophilic routes to microbial electrofuels. ACS Catal 1(9):1043–1050

    Article  CAS  Google Scholar 

  • Hussain A, Qazi JI (2016) Metals-induced functional stress in sulphate-reducing thermophiles: 3. Biotech 6(1):17

    Google Scholar 

  • Ji SQ, Wang B, Lu M, Li FL (2016) Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnol Biofuels 9:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59(Pt 5):1082–1089

    Article  PubMed  CAS  Google Scholar 

  • Jong BC, Kim BH, Chang IS, Liew PW, Choo YF, Kang GS (2006) Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ Sci Technol 40(20):6449–6454

    Article  PubMed  CAS  Google Scholar 

  • Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo ice shelf, Antarctica. Environ Microbiol 7(4):519–529

    Article  PubMed  CAS  Google Scholar 

  • Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:4. https://doi.org/10.1186/2046-9063-8-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato C, Bartlett DH (1997) The molecular biology of barophilic bacteria. Extremophiles 1(3):111–116

    Article  PubMed  CAS  Google Scholar 

  • Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267

    Article  CAS  Google Scholar 

  • Klenk H, Clayton R, Tomb J, White O, Nelson K, Ketchum K, Dodson R, Gwinn M, Hickey E, Peterson J et al (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

    Article  PubMed  CAS  Google Scholar 

  • Koga Y (2012) Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012:789652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krisko A, Radman M (2013) Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 5(7):a012765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kulshreshtha NM, Kumar A, Bisht G, Pasha S, Kumar R (2012) Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater. Sci World J 2012:345101. https://doi.org/10.1100/2012/345101

    Article  CAS  Google Scholar 

  • Kumar S, Bhalla A, Bibra M, Sani RK (2015) Thermophilic biohydrogen production: challenges at the industrial scale. In: Krishnaraj RN (ed) Bioenergy: opportunities and challenges. Apple Academy Press, USA, pp 3–35

    Chapter  Google Scholar 

  • Lange CC, Wackett LP, Minton KW, Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16(10):929–933

    Article  PubMed  CAS  Google Scholar 

  • Lau NS, Sam KK, Amirul AA (2017) Genome features of moderately halophilic polyhydroxyalkanoate-producing Yangia sp. CCB-MM3. Stand Genomic Sci 12:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee D, Koh Y, Kim K, Kim B, Choi H, Kim D, Suhartono MT, Pyun Y (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179(2):393–400

    Article  PubMed  CAS  Google Scholar 

  • López-López O, Cerdán ME, González Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15(5):445–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu L, Ren N, Zhao X, Wang H, Wu D, Xing D (2011) Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ Sci 4:1329–1336

    Article  CAS  Google Scholar 

  • Lusk BG, Colin A, Parameswaran P, Rittmann BE, Torres CI (2007) Simultaneous fermentation of cellulose and current production with an enriched mixed culture of thermophilic bacteria in a microbial electrolysis cell. Microb Biotechnol 11:63–73. https://doi.org/10.1111/1751-7915.12733

    Article  CAS  Google Scholar 

  • Lusk BG, Khan QF, Parameswaran P, Hameed A, Ali N, Rittmann BE, Torres CI (2015) Characterization of electrical current-generation capabilities from thermophilic bacterium Thermoanaerobacter pseudethanolicus using xylose, glucose, cellobiose, or acetate with fixed anode potentials. Environ Sci Technol 49(24):14725–14731

    Article  PubMed  CAS  Google Scholar 

  • Makled SO, Hamdan AM, El-Sayed AM, Hafez EE (2017) Evaluation of marine psychrophile, Psychrobacter namhaensis SO89, as a probiotic in Nile tilapia (Oreochromis niloticus) diets. Fish Shellfish Immunol 61:194–200

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663

    Article  PubMed  CAS  Google Scholar 

  • Mathis BJ, Marshall CW, Milliken CE, Makkar RS, Creager SE, May HD (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 78(1):147–155

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Mukai Y, Ogata D, Shozui F, Nduko JM, Taguchi S, Ooi T (2010) Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Appl Microbiol Biotechnol 86(5):1431–1438

    Article  PubMed  CAS  Google Scholar 

  • Maurya AK, Parashar D, Satyanarayana T (2017) Bioprocess for the production of recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile and its structural and biochemical characteristics. Int J Biol Macromol 94(Pt A) 94:36–44

    Article  CAS  Google Scholar 

  • McDuff S, King GM, Neupane S, Myers MR (2016) Isolation and characterization of extremely halophilic CO-oxidizing euryarchaeota from hypersaline cinders, sediments and soils and description of a novel CO oxidizer, Haloferax namakaokahaiae Mke2.3T, sp. nov. FEMS Microbiol Ecol 92(4):fiw028

    Article  PubMed  CAS  Google Scholar 

  • Mei N, Zergane N, Postec A, Erauso G, Ollier A, Payri C, Pelletier B, Fardeau M-L, Ollivier B, Quéméneur M (2014) Fermentative hydrogen production by a new alkaliphilic Clostridium sp. (strain PROH2) isolated from a shallow submarine hydrothermal chimney in Prony Bay, New Caledonia. Int J Hydrog Energy 39(34):19465–19473

    Article  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2008) Life at extreme limits: the anaerobic halophilic alkalithermophiles. Ann N Y Acad Sci 1125:44–57

    Article  PubMed  CAS  Google Scholar 

  • Mezhoud N, Zili F, Bouzidi N, Helaoui F, Ammar J, Ouada HB (2014) The effects of temperature and light intensity on growth, reproduction and EPS synthesis of a thermophilic strain related to the genus Graesiella. Bioprocess Biosyst Eng 37(11):2271–2280. https://doi.org/10.1007/s00449-014-1204-7. Epub 2014 May 13

    Article  PubMed  CAS  Google Scholar 

  • Mohamed ZA (2008) Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. Toxicon 51:17–27

    Article  PubMed  CAS  Google Scholar 

  • Morgan R, Xiao J, Xu S (1998) Characterization of an extremely thermostable restriction enzyme, PspGI, from a Pyrococcus strain and cloning of the PspGI restriction-modification system in Escherichia coli. Appl Environ Microbiol 64(10):3669–3673

    PubMed  PubMed Central  CAS  Google Scholar 

  • Müller JE, Heggeset TM, Wendisch VF, Vorholt JA, Brautaset T (2015) Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Appl Microbiol Biotechnol 99(2):535–551

    Article  PubMed  CAS  Google Scholar 

  • Nadeau T-L, Castenholz RW (2000) Characterization of psychrophilic oscillatorians (cyanobacteria) from Antarctic meltwater ponds. J Phycol 36(5):914–923. https://doi.org/10.1046/j.1529-8817.2000.99201.x

    Article  Google Scholar 

  • Nakamuraa Y, Sawadaa T, Moritab Y, Tamiya E (2002) Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem Eng J 12(1):79–86

    Article  Google Scholar 

  • Nakayama A, Yano Y, Yoshida K (1994) New method for isolating barophiles from intestinal contents of deep-sea fishes retrieved from the abyssal zone. Appl Environ Microbiol 60(11):4210–4212

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nan M, Nesrine Z, Anne P, Gael E, Angélique O, Claude P, Bernard P, Marie-Laure F, Bernard MQ (2014) Fermentative hydrogen production by a new alkaliphilic Clostridium sp. (strain PROH2) isolated from a shallow submarine hydrothermal chimney in Prony Bay, New Caledonia. Int J Hydrog Energy 39(34):19465–19473

    Article  CAS  Google Scholar 

  • Nancucheo I, Johnson DB (2010) Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia. Appl Environ Microbiol 76(2):461–467

    Article  PubMed  CAS  Google Scholar 

  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999 Jun) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51(6):711–729

    Article  PubMed  CAS  Google Scholar 

  • Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G (2002) Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68(4):2081–2084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsson S, Penacho V, Puente-Sánchez F, Díaz S, Gonzalez-Pastor DE, Aguilera A (2017) Horizontal gene transfer of phytochelatin synthases from bacteria to extremophilic green algae. Microb Ecol 73:50

    Article  PubMed  CAS  Google Scholar 

  • Ou MS, Mohammed N, Ingram LO, Shanmugam KT (2009) Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl Biochem Biotechnol 155(1–3):379–385

    PubMed  CAS  Google Scholar 

  • Paavilainen S, Helistö P, Korpela T (1994) Conversion of carbohydrates to organic acids by alkaliphilic bacilli. J Ferment Bioeng 78(3):217–222

    Article  CAS  Google Scholar 

  • Pan LJ, Tang XD, Li CX, Yu GW, Wang Y (2017) Biodegradation of sulfamethazine by an isolated thermophile-Geobacillus sp. S-07. World J Microbiol Biotechnol 33(5):85

    Article  PubMed  CAS  Google Scholar 

  • Paulino-Lima IG, Fujishima K, Navarrete JU, Galante D, Rodrigues F, Azua-Bustos A, Rothschild LJ (2016) Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations. J Photochem Photobiol B 163:327–336

    Article  PubMed  CAS  Google Scholar 

  • Paulo PL, Vallero MV, Treviño RH, Lettinga G, Lens PN (2004) Thermophilic (55 degrees C) conversion of methanol in methanogenic-UASB reactors: influence of sulphate on methanol degradation and competition. J Biotechnol 11(1):79–88

    Article  CAS  Google Scholar 

  • Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, García MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of Eicosapentaenoic acid (EPA). PLoS One 6(8):e23325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pham VH, Kim J, Jeong SW (2014) Enhanced isolation and culture of highly efficient psychrophilic oil-degrading bacteria from oil-contaminated soils in South Korea. J Environ Biol 35(6):1145–1149

    PubMed  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33(3):183–209

    Article  PubMed  CAS  Google Scholar 

  • Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17(3):250–255

    Article  PubMed  CAS  Google Scholar 

  • Ramle Z, Rahim RA (2016) Psychrophilic lipase from Arctic bacterium. Trop Life Sci Res 27(supp1):151–157. https://doi.org/10.21315/tlsr2016.27.3.21

    Article  PubMed  PubMed Central  Google Scholar 

  • Rampelotto PH et al (2013) Extremophiles and extreme environments. Life 3(3):482–485. https://doi.org/10.3390/life3030482

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathinam NK, Samanta D, Kumar A, Sani R (2017) Bioprospecting of the thermostable cellulolytic enzyme through modeling and virtual screening method. Can J Biotech 1(1):19–25

    Article  Google Scholar 

  • Razak CNA, Salleh AB, Musani R, Samad MY, Basri M (1997) Some characteristics of lipases from thermophilic fungi isolated from palm oil mill effluent. J Mol Catal B Enzym 3(1–4):153–159

    Article  CAS  Google Scholar 

  • Remias D, Schwaiger S, Aigner S, Leya T, Stuppner H, Lütz C (2012) Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol Ecol 79(3):638–648

    Article  PubMed  CAS  Google Scholar 

  • Richter K, George R, Kagan J, Richmond J (2015) Autonomous, retrievable, deep sea microbial fuel cell. In: Conference of the OCEANS 2015, Genova. doi: https://doi.org/10.1109/OCEANS-Genova.2015.7271635

  • Royter M, Schmidt M, Elend C et al (2009) Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. Tengcongensis. Extremophiles 13(5):769–783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu HS, Kim HK, Choi WC, Kim MH, Park SY, Han NS, Oh TK, Lee JK (2006) New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl Microbiol Biotechnol 70(3):321–326

    Article  PubMed  CAS  Google Scholar 

  • Sahli R, Rivière C, Neut C, Bero J, Sahuc ME, Smaoui A, Beaufay C, Roumy V, Hennebelle T, Rouillé Y et al (2017) An ecological approach to discover new bioactive extracts and products: the case of extremophile plants. J Pharm Pharmacol 69:1041

    Article  PubMed  CAS  Google Scholar 

  • Sani RK, Rathinam NK (2017) In: Sani R, Krishnaraj RN (eds) Extremophilic enzymatic processing of lignocellulosic feedstocks to bioenergy. Springer, Cham. ISBN 978-3-319-54684-1

    Chapter  Google Scholar 

  • Santorelli M, Maurelli L, Pocsfalvi G, Fiume I, Squillaci G, La Cara F, Del Monaco G, Morana A (2016) Isolation and characterization of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica. Int J Biol Macromol 92:174–184

    Article  PubMed  CAS  Google Scholar 

  • Sar P, Kazy SK, Paul D, Sarkar A (2013) Metal bioremediation by thermophilic microorganisms. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht

    Google Scholar 

  • Saranya P, Kumari HS, Jothieswari M, Rao BP, Sekaran G (2014) Novel extremely acidic lipases produced from bacillus species using oil substrates. J Ind Microbiol Biotechnol 41:9–15

    Article  PubMed  CAS  Google Scholar 

  • Sardari RR, Kulcinskaja E, Ron EY, Björnsdóttir S, Friðjónsson ÓH, Hreggviðsson GÓ, Karlsson EN (2017) Evaluation of the production of exopolysaccharides by two strains of the thermophilic bacterium Rhodothermus marinus. Carbohydr Polym 156:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sarilmiser HK, Ates O, Ozdemir G, Arga KY, Oner ET (2015) Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J Biosci Bioeng 119(4):455–463

    Article  PubMed  CAS  Google Scholar 

  • Sheu DS, Chen WM, Lai YW, Chang RC (2012) Mutations derived from the thermophilic polyhydroxyalkanoate synthase PhaC enhance the thermostability and activity of PhaC from Cupriavidus necator H16. J Bacteriol 194(10):2620–2629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sinha SK, Datta S (2016) β-glucosidase from the hyperthermophilic archaeon Thermococcus sp. is a salt-tolerant enzyme that is stabilized by its reaction product glucose. Appl Microbiol Biotechnol 100(19):8399–8409

    Article  PubMed  CAS  Google Scholar 

  • Sokolovskaya OM, Magyar JS, Buzzeo MC (2015) Electrochemical behavior of cytochrome c552 from a psychrophilic microorganism. J Phys Chem C 118(33):18829–18835

    Article  CAS  Google Scholar 

  • Sorokin DY, Chernyh NA (2016) ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles 20(6):895–901

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Panteleeva AN, Muyzer G (2012) Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes. Int J Syst Evol Microbiol 62(Pt 9):2107–2113

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18(5):791–809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spijkerman E, Stojkovic S, Beardall J (2014) CO2 acquisition in Chlamydomonas acidophila is influenced mainly by CO2, not phosphorus, availability. Photosynth Res 121(2–3):213–221

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond Ser B Biol Sci 361(1474):1837–1843

    Article  CAS  Google Scholar 

  • Stierle AA, Stierle DB, Kelly K (2006) Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. J Org Chem 71(14):5357–5360

    Article  PubMed  CAS  Google Scholar 

  • Stierle AA, Stierle DB, Girtsman T, Mou TC, Antczak C, Djaballah H (2015) Azaphilones from an acid mine extremophile strain of a Pleurostomophora sp. J Nat Prod 78(12):2917–2923. https://doi.org/10.1021/acs.jnatprod.5b00519. Epub 2015 Dec 7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stivaletta N, Barbieri R, Billi D (2012) Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Orig Life Evol Biosph 42(2):187–200

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Iwasaki T, Uzawa T, Hara K, Nemoto N, Kon T, Ueki T, Yamagishi A, Oshima T (2002) Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6(1):39–44

    Article  PubMed  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69(9):5157–5169. https://doi.org/10.1128/AEM.69.9.5157-5169.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsao JH, Kaneshiro MK, Yu S, Clark DS (1994) Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. Biotechnol Bioeng 43:258–261

    Article  PubMed  CAS  Google Scholar 

  • Tortell PD, Maldonado MT, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol 29:1–11

    Article  CAS  Google Scholar 

  • Treves H, Raanan H, Kedem I, Murik O, Keren N, Zer H, Berkowicz SM, Giordano M, Norici A, Shotland Y, Ohad I, Kaplan A (2016) The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytol 210(4):1229–1243

    Article  PubMed  CAS  Google Scholar 

  • Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372

    Article  PubMed  CAS  Google Scholar 

  • Verma ML, Kanwar SS (2010) Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus Cereus MTCC 8372. Acta Microbiol Immunol Hung 57(3):191–207

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Bibra M, Rathinam NK, Salem D, Gadhamshetty VR, Sani RK (2018) Biohydrogen production from space crew’s waste simulants using thermophilic consolidated bioprocessing. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.01.109

  • Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2(3):257–267

    Article  PubMed  CAS  Google Scholar 

  • Wiegel J, Kevbrin VV (2004) Alkalithermophiles. Biochem Soc Trans 32(Pt 2):193–198

    Article  PubMed  CAS  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in Halite Rocks from the Hyperarid Core of the Atacama Desert. Astrobiology 6(3):415–422

    Article  PubMed  Google Scholar 

  • Willquist K, Zeidan AA, van Niel EW (2010) Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory. Microb Cell Fact 9:89. https://doi.org/10.1186/1475-2859-9-89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2(11):1146–1156

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Dong H, Zheng C, Cui Q, He P, Tang Y (2015) Hydrocarbon degradation by a newly isolated thermophilic Anoxybacillus sp. with bioemulsifier production and new alkB genes. RSC Adv 5:102367–102377

    Article  CAS  Google Scholar 

  • Xiang X, Dong X, Huang L (2003) Sulfolobus tengchongensis sp. nov., a novel thermoacidophilic archaeon isolated from a hot spring in Tengchong, China. Extremophiles 7:493

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Wang P, Zeng X, Bartlett DH, Wang F (2007) Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol 57(Pt 1):60–65

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Shimizu S (1988) Microbial and enzymatic processes for the production of biologically and chemically useful compounds. Angew Chem 27(5):622–642

    Article  Google Scholar 

  • Yang SH, Lee JH, Ryu JS, Kato C, Kim SJ (2007) Shewanella donghaensis sp. nov., a psychrophilic, piezosensitive bacterium producing high levels of polyunsaturated fatty acid, isolated from deep-sea sediments. Int J Syst Evol Microbiol 57(Pt 2):208–212

    Article  PubMed  CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Van Boxtel R (1979) Isolation of a deep sea barophilic bacterium and some of its growth characteristics. Science 205:808–810

    Article  PubMed  CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Van Boxtel R (1982) Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol 44:1356–1361

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yu L, Yuan Y, Tang J, Zhou S (2017) Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2. Bioelectrochemistry 117:23–28

    Article  PubMed  CAS  Google Scholar 

  • Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinèar C et al (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14:617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zajc J, Džeroski S, Kocev D, Oren A, Sonjak S, Tkavc R, Gunde-Cimerman N (2014) Chaophilic or chaotolerant fungi: a new category of extremophiles? Front Microbiol 5:708

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalar P, de Hoog GS, Schroers HJ, Frank JM, GundeCimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.) Antonie Van Leeuwenhoek 87:311–328

    Article  PubMed  CAS  Google Scholar 

  • Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15(5):611–618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the National Science Foundation in the form of BuG ReMeDEE initiative (Award # 1736255) is gratefully acknowledged. The authors also gratefully acknowledge Department of Chemical and Biological Engineering at the South Dakota School of Mines and Technology for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Navanietha Krishnaraj Rathinam or Rajesh K. Sani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathinam, N.K., Sani, R.K. (2018). Bioprospecting of Extremophiles for Biotechnology Applications. In: Sani, R., Krishnaraj Rathinam, N. (eds) Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Cham. https://doi.org/10.1007/978-3-319-74459-9_1

Download citation

Publish with us

Policies and ethics