Risks Associated with the Use of High-Strength Titanium Alloys in Transportation Systems

  • Mykola Chausov
  • Pavlo MaruschakEmail author
  • Olegas Prentkovskis
  • Myroslav Karpets
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 36)


On an example of testing sheet high-strength (α + β) titanium alloys with different percentages of α and β phases, the danger of using titanium alloys with a large α phase content in transportation systems subjected to impact-oscillatory loading is shown. Under impact-oscillatory loading, dynamic nonequilibrium processes (DNP) with self-organization of the structure can be realized in titanium alloys. As a result, depending on the initial percentage of α and β phases in alloys, the impact-oscillatory loading can significantly affect fluctuations in the initial plastic deformation of the alloys upward or downward without appreciably reducing the strength of the alloy.


Impact-oscillatory loading Dynamic nonequilibrium processes (α + β) titanium alloys Mechanical properties 


  1. 1.
    Peters, M., Kumpfert, J., Ward, C.H., Leyens, C.: Titanium alloys for aerospace applications. Adv. Eng. Mater. 5, 419–427 (2003)CrossRefGoogle Scholar
  2. 2.
    Khanna, N., Davim, J.P.: Design-of-experiments application in machining titanium alloys for aerospace structural components. Measur. J. Int. Measur. Confederation 61, 280–290 (2015)CrossRefGoogle Scholar
  3. 3.
    Brewer, W.D., Bird, R.K., Wallace, T.A.: Titanium alloys and processing for high speed aircraft. Mater. Sci. Eng. A 243(1–2), 299–304 (1998)CrossRefGoogle Scholar
  4. 4.
    Khorev, A.I.: High-strength titanium alloy VT23 and its applications in advanced welded and brazed structures. Weld. Int. 24(4), 276–281 (2010)CrossRefGoogle Scholar
  5. 5.
    Khorev, A.I.: Alloying titanium alloys with rare-earth metals. Russ. Eng. Res. 31(11), 1087–1094 (2011)CrossRefGoogle Scholar
  6. 6.
    Illarionov, A.G., Popov, A.A., Illarionova, S.M.: Effect of microalloying, with REM inclusively, on the structure. Phase composition and properties of (α + β)-titanium alloy. Met. Sci. Heat Treat. 57(11–12), 719–725 (2016)CrossRefGoogle Scholar
  7. 7.
    Gordienko, A.I., Dymovskii, A.S., Kozina, IYu.: Correlation of grain-structure parameters with the properties of thermally strengthened titanium alloys VT6 and VT23. Met. Sci. Heat Treat. 33(2), 137–141 (1991)CrossRefGoogle Scholar
  8. 8.
    Babareko, A.A., Egiz, I.V., Khorev, M.A.: Effect of supplementary alloying of titanium alloy VT23 on its phase composition and tendency to recrystallization. Met. Sci. Heat Treat. 35(2), 116–120 (1993)CrossRefGoogle Scholar
  9. 9.
    Chausov, M.G., Berezin, V.B., Pylypenko, A.P., Hutsaylyuk, V.B.: Strain field evolution on the surface of aluminum sheet alloys exposed to specific impact with oscillation loading. J. Strain. Anal. 50, 61–62 (2014)CrossRefGoogle Scholar
  10. 10.
    Chausov, M., Maruschak, P., Pylypenko, A., Markashova, L.: Enhancing plasticity of high-strength titanium alloys VT 22 under impact-oscillatory loading. Phil. Mag. 97, 389–399 (2017)CrossRefGoogle Scholar
  11. 11.
    Chausov, M.G., Maruschak, P.O., Pylypenko, A.P., Berezin, V.B., Prentkovskis, O.: Structural self-organization of titanium alloys under impulse force action. Mater. Test. 59(6), 567–569 (2017)CrossRefGoogle Scholar
  12. 12.
    Chausov, N.G., Voityuk, D.G., Pilipenko, A.P., Kuz’menko, A.M.: Setup for testing materials with plotting complete stress–strain diagrams. Strength Mater. 36(5), 532–537 (2004)CrossRefGoogle Scholar
  13. 13.
    Chausov, N.G., Pilipenko, A.P.: Influence of dynamic overloading on fracture kinetics of metals at the final stages of deformation. Mechanika 48, 13–18 (2004)Google Scholar
  14. 14.
    March, A.: Mathematische theorie der regelung nach der korngestalt bei affiner deformation. Z. Kristallogr. 81, 285–297 (1932)zbMATHGoogle Scholar
  15. 15.
    Dollase, W.A.: Correction of intensities for preferred orientation of the March model. J. Appl. Cryst. 19, 267–272 (1986)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mykola Chausov
    • 1
  • Pavlo Maruschak
    • 2
    Email author
  • Olegas Prentkovskis
    • 3
  • Myroslav Karpets
    • 4
  1. 1.National University of Life and Environmental Sciences of UkraineKyivUkraine
  2. 2.Ternopil National Ivan Pul’uj Technical UniversityTernopilUkraine
  3. 3.Vilnius Gediminas Technical UniversityVilniusLithuania
  4. 4.Frantsevich Institute for Materials Science ProblemsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations