Advertisement

Prerequisites

  • Gunther Schmidt
  • Michael Winter
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2208)

Abstract

Relational methods are not yet broadly known and, thus, need a detailed introduction. We develop all the necessary methodology; it originates in particular from Schmidt and Ströhlein (Relationen und Graphen. Mathematik für Informatiker. Springer, 1989; Relations and graphs—discrete mathematics for computer scientists. EATCS monographs on theoretical computer science. Springer, 1993), Schmidt (Relational mathematics. Encyclopedia of mathematics and its applications, vol 132. Cambridge University Press, 2011, 584 pp), Schmidt and Winter (Relational Mathematics continued. Technical Report 2014-01, Fakultät für Informatik, Universität der Bundeswehr München, April 2014). There, full proofs may be found. In addition it is shown how everything is based on a concise axiomatic basis. However, some of the following results are new, and therefore given together with their proof.

References

  1. [Sch11]
    Gunther Schmidt. Relational Mathematics, volume 132 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2011. ISBN 978-0-521-76268-7, 584 pages.Google Scholar
  2. [SS89]
    Gunther Schmidt and Thomas Ströhlein. Relationen und Graphen. Mathematik für Informatiker. Springer-Verlag, 1989. ISBN 3-540-50304-8, ISBN 0-387-50304-8.Google Scholar
  3. [SS93]
    Gunther Schmidt and Thomas Ströhlein. Relations and Graphs — Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1993. ISBN 3-540-56254-0, ISBN 0-387-56254-0.Google Scholar
  4. [SW14]
    Gunther Schmidt and Michael Winter. Relational Mathematics Continued. Technical Report 2014-01, Fakultät für Informatik, Universität der Bundeswehr München, April 2014. http://arxiv.org/abs/1403.6957.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gunther Schmidt
    • 1
  • Michael Winter
    • 2
  1. 1.Fakultät für InformatikUniversität der Bundeswehr MünchenNeubibergGermany
  2. 2.Department of Computer ScienceBrock UniversitySt. CatharinesCanada

Personalised recommendations