Skip to main content

Electrical Impedance Signal Analysis for Medical Diagnosis

  • Chapter
  • First Online:
Bioimpedance in Biomedical Applications and Research

Abstract

Electrical bioimpedance (EBI) depends on physical, biological, or chemical characteristics of the biological sample. EBI measurements provide an alternative to observe in human and nonhuman subjects the following aspects: special features, biological changes compared with controls, different stages, changes in time, or any other issue to establish identification or association with a disease condition, stage, or evolution. Many researchers have addressed this relationship, with a huge amount of possibilities, for example, in body composition, skin and breast tumor/cancer, kidney problems, edema, in the quality and quantity of muscle/fat/water, in the case of lung function/condition, gastric motility, knee injuries, etc. How safe, accurate, sensitive, and specific are these alternatives in medical diagnosis is the subject of this chapter.

Scope: Without the aim of being exhaustive, the purpose of this chapter is to give a general overview on the use of electrical bioimpedance devices, methodologies, and signal analysis to the medical diagnosis. This chapter also comprises different options, to acquire, process, analyze, and interpret EBI data and/or parameters, with the intention to achieve, improve, or complement the diagnosis of a disease, the stage, or the determination of a physiological function monitoring. The aforementioned is important to clinical diagnosis and treatment. This chapter addresses handicaps, challenges, and of course the achievements of this goal, mainly in the most recent research work performed in the EBI area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleman-Mateo, H., Rush, E., Esparza-Romero, J., Ferriolli, E., Ramirez-Zea, M., Bour, A., et al. (2010). Prediction of fat-free mass by bioelectrical impedance analysis in older adults from developing countries: A cross-validation study using the deuterium dilution method. The Journal of Nutrition, Health & Aging, 14(6), 418–426. https://doi.org/10.1007/s12603-010-0031-z.

    Article  Google Scholar 

  • Askanazi, J., Silverberg, P. A., Foster, R. J., Hyman, A. I., Milic-Emili, J., & Kinney, J. M. (1980). Effects of respiratory apparatous on breathing pattern. Journal of Applied Physiology, 48, 577–580. PMID:6769880.

    Article  Google Scholar 

  • Atefi, S. R., Seoane, F., Thorlin, T., & Lindecrantz, K. (2013). Stroke damage detection using classification trees on electrical bioimpedance cerebral spectroscopy measurements. Sensors, 13(8), 10074–10086. https://doi.org/10.3390/s130810074.

    Article  Google Scholar 

  • Bahramiabarghouei, H., Porter, E., Santorelli, A., Gosselin, B., Popović, M., & Rusch, L. A. (2015). Flexible 16 antenna Array for microwave breast cancer detection. IEEE Transactions on Biomedical Engineering, 62(10), 2516–2525. https://doi.org/10.1109/TBME.2015.2434956

    Article  Google Scholar 

  • Balleza, M., Calaf, N., Feixas, T., Gonzalez, M., Antón, D., Riu, P. J., et al. (2009). Measuring breathing pattern in patients with chronic obstructive pulmonary disease by electrical impedance tomography. Archivos de Bronconeumología, 45, 320–324. https://doi.org/10.1016/j.arbres.2009.01.013.

    Article  Google Scholar 

  • Balleza, M., Fornos, J., Calaf, N., Feixas, T., Gonzalez, M., Antón, D., et al. (2007). Monitoring of breathing pattern at rest by electrical impedance tomography. Archivos de Bronconeumología, 43, 300–303. PMID:17583638.

    Article  Google Scholar 

  • Balleza-Ordaz, M., Perez-Alday, E., Vargas-Luna, M., & Riu, J. P. (2015). Tidal volume monitoring by electrical impedance tomography (EIT) using different regions of interest (ROI): Calibration equations. Biomedical Signal Processing and Control, 18, 102–109. https://doi.org/10.1016/j.bspc.2014.12.004.

    Article  Google Scholar 

  • Barrea, L., Macchia, P. E., Somma, C., Napolitano, M., Balato, A., Falco, A., et al. (2016). Bioelectrical phase angle and psoriasis: A novel association with psoriasis severity, quality of life and metabolic syndrome. Journal of Translational Medicine, 14(1), 130. https://doi.org/10.1186/s12967-016-0889-6

    Article  Google Scholar 

  • Bernstein, D. P., & Lemmens, H. J. (2005). Stroke volume equation for impedance cardiography. Medical & Biological Engineering & Computing, 43(4), 443–450. https://doi.org/10.1007/BF02344724.

    Article  Google Scholar 

  • Broers, N. J., Martens, R. J., Cornelis, T., Diederen, N. M., Wabel, P., van der Sande, F. M., et al. (2015). Body composition in dialysis patients: A functional assessment of bioimpedance using different prediction models. Journal of Renal Nutrition, 25(2), 121–128. https://doi.org/10.1053/j.jrn.2014.08.007.

    Article  Google Scholar 

  • Brown, B. H. (2003). Electrical impedance tomography (EIT): A review. Journal of Medical Engineering & Technology., 27(3), 97–108. https://doi.org/10.1080/0309190021000059687.

    Article  Google Scholar 

  • Brown, B. H., Barber, D. C., & Seagar, A. D. (1985). Applied potential tomography: Possible clinical applications. Clinical Physics and Physiological Measurement, 6, 109–121. https://doi.org/10.1088/0143-0815/6/2/002.

    Article  Google Scholar 

  • Brown, B. H., Milnes, P., Abdul, S., & Tidy, J. A. (2005). Detection of cervical intraepithelial neoplasia using impedance spectroscopy: A prospective study. BJOG, 112(6), 802–806. https://doi.org/10.1111/j.1471-0528.2004.00530.x.

    Article  Google Scholar 

  • Bundred, N. J., Stockton, C., Keeley, V., Riches, K., Ashcroft, L., Evans, A., et al. (2015). Comparison of multi-frequency bioimpedance with perometry for the early detection and intervention oflymphoedema after axillary node clearance for breast cancer. Breast Cancer Research and Treatment, 151(1), 121–129. https://doi.org/10.1007/s10549-015-3357-8.

    Article  Google Scholar 

  • Cinca, J., Ramos, J., Garcia, M. A., Bragos, R., Bayés-Genis, A., Salazar, Y., et al. (2008). Changes in myocardial electrical impedance in human heart graft rejection. European Journal of Heart Failure, 10(6), 594–600. https://doi.org/10.1016/j.ejheart.2008.04.013.

    Article  Google Scholar 

  • Cole, K. S. (1928). Electric impedance of suspensions of arbacia eggs. The Journal of General Physiology, 12(1), 37–54. PMID:19872447.

    Article  Google Scholar 

  • Cole, K. S., & Cole, R. H. (1936). Electric impedance of asterias eggs. The Journal of General Physiology, 19(4), 609–623. PMID:19872951.

    Article  Google Scholar 

  • Corciovă, C., Turnea, M., Matei, D., & Andritoi, D. (2012). Evaluation of cardiac parameters using electrical impedance plethysmography. Revista Medico-Chirurgicală̆ a Societă̆ţ̜ii de Medici ş̧i Naturaliş̧ti din Iaş̧i, 116(3), 927–932. PMID:23272554.

    Google Scholar 

  • Das, L., Das, S., & Chatterjee, J. (2015). Electrical bioimpedance analysis: A new method in cervical cancer screening. Journal of Medical Engineering, 2015, 636075. https://doi.org/10.1155/2015/636075.

    Article  Google Scholar 

  • Davis, M. P., Yavuzsen, T., Khoshknabi, D., Kirkova, J., Walsh, D., Laseen, W., et al. (2009). Bioelectric impedance phase angle changes during hydration and prognosis in advanced cancer. The American Journal of Hospice & Palliative Care, 26, 180–187. https://doi.org/10.1177/1049909108330028.

    Article  Google Scholar 

  • Di Somma, S., Vetrone, F., & Maisel, A. S. (2014). Bioimpedance vector analysis (BIVA) for diagnosis and Management of Acute Heart Failure. Current Emergency and Hospital Medicine Reports, 2, 104–111. https://doi.org/10.1007/s40138-014-0043-9.

    Google Scholar 

  • Dorna Mde, S., Santos, L. A., Gondo, F. F., Augusti, L., de Campos Franzoni, L., Sassaki, L. Y., et al. (2016). Phase angle is associated with advanced fibrosis in patients chronically infected with hepatitis C virus. Life Sciences, 154, 30–33. https://doi.org/10.1016/j.lfs.2016.02.061.

    Article  Google Scholar 

  • Eyüboglu, B. M., Öner, A. F., Baysal, U., Biber, C., Keyf, A. I., Yilmaz, U., et al. (1995). Aplication of electrical impedance tomography in diagnosis of emphysema – A clinical study. Physiological Measurement, 16, A191–A211. https://doi.org/10.1088/0967-3334/16/3A/018.

    Article  Google Scholar 

  • Fellahi, J. L., & Fischer, M. O. (2014). Electrical bioimpedance cardiography: An old technology with new hopes for the future. Journal of Cardiothoracic and Vascular Anesthesia, 28(3), 755–760. https://doi.org/10.1053/j.jvca.2013.12.026.

    Article  Google Scholar 

  • Foster, K. R., & Schwan, H. P. (1989). Dielectric properties of tissues and biological materials: A critical review. Critical Reviews in Biomedical Engineering, 17, 25–104. PMID: 2651001.

    Google Scholar 

  • Frank, E. H., & Grodzinsky, A. J. (1987). Cartilage electromechanics—I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength. Journal of Biomechanics, 20, 615–627. https://doi.org/10.1016/0021-9290(87)90282-X

    Article  Google Scholar 

  • Fricke, H. (1925). The electric capacity of suspensions with special reference to blood. The Journal of General Physiology, 9(2), 137–152. PMID:19872238.

    Article  Google Scholar 

  • Fricke, H., & Curtis, H. J. (1935). The electric impedance of hemolyzed suspensions of mammalian erythrocytes. The Journal of General Physiology, 18(6), 821–836. PMID:19872891.

    Article  Google Scholar 

  • Gajre, S. S., Singh, U., Saxena, R. K., & Anand, S. (2007). Electrical impedance signal analysis in assessing the possibility of non-invasive diagnosis of knee osteoarthritis. Journal of Medical Engineering & Technology, 31(4), 288–299. https://doi.org/10.1080/03091900600863745.

    Article  Google Scholar 

  • Génot, N., Mewton, N., Bresson, D., Zouaghi, O., Francois, L., Delwarde, B., et al. (2015). Bioelectrical impedance analysis for heart failure diagnosis in the ED. The American Journal of Emergency Medicine, 33(8), 1025–1029. https://doi.org/10.1016/j.ajem.2015.04.021.

    Article  Google Scholar 

  • Giouvanoudi, A. C., & Spyrou, N. M. (2008). Epigastric electrical impedance for the quantitative determination of the gastric acidity. Physiological Measurement, 29(11), 1305–1317. https://doi.org/10.1088/0967-3334/29/11/006.

    Article  Google Scholar 

  • Grimnes, S., & Martinsen, O. (2014). Bioimpedance and bioelectricity basics (3rd ed.). Academic Press. ISBN:9780124114708.

    Google Scholar 

  • Gupta, D., Lammersfeld, C. A., Burrows, J. L., Dahlk, S. L., Vashi, P. G., Grutsch, J. F., et al. (2004). Bioelectrical impedance phase angle in clinical practice: Implications for prognosis in advanced colorectal cancer. The American Journal of Clinical Nutrition, 80(6), 1634–1638.

    Article  Google Scholar 

  • Gupta, D., Lis, C. G., Dahlk, S. L., King, J., Vashi, P. G., Grutsch, J. F., et al. (2008). The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer. Nutrition Journal, 7, 19. https://doi.org/10.1186/1475-2891-7-19

    Google Scholar 

  • Han, S. I., & Han, K. H. (2015). Electrical detection method for circulating tumor cells using Graphene Nanoplates. Analytical Chemistry, 87(20), 10585–10592. https://doi.org/10.1021/acs.analchem.5b03147.

    Article  Google Scholar 

  • Harris, N. D., Sugget, A. J., & Barber, D. C. (1987). Applications of applied potential tomography (APT) in respiratory medicine. Clinical Physics and Physiological Measurement, 8, 155–165. https://doi.org/10.1088/0143-0815/8/4A/020.

    Article  Google Scholar 

  • Harris, N. D., Suggett, A. J., Barber, D. C., & Brown, B. (1988). Applied potential tomography: A new technique for monitoring pulmonary function. Clinical Physics and Physiological Measurement, 9(A), 79–85. https://doi.org/10.1088/0143-0815/9/4A/014.

    Article  Google Scholar 

  • Har-Shai, Y., Glickman, Y. A., Siller, G., McLeod, R., Topaz, M., Howe, C., et al. (2005). Electrical impedance scanning for melanoma diagnosis: A validation study. Plastic and Reconstructive Surgery, 116(3), 782–790. https://doi.org/10.1097/01.prs.0000176258.52201.22

    Article  Google Scholar 

  • Hastuti, J., Kaagawa, M., Byrne, N. M., & Hills, A. P. (2016). Proposal of new body composition prediction equations from bioelectrical impedance for Indonesian men. European Journal of Clinical Nutrition, 70(11), 1271–1277. https://doi.org/10.1038/ejcn.2016.113.

    Article  Google Scholar 

  • Haverkort, E. B., Reijven, P. L., Binnekade, J. M., de van der Schueren, M. A., Earthman, C. P., Gouma, D. J., et al. (2015). Bioelectrical impedance analysis to estimate body composition in surgical and oncological patients: Asystematic review. European Journal of Clinical Nutrition, 69(1), 3–13. https://doi.org/10.1038/ejcn.2014.203.

    Article  Google Scholar 

  • Hoffer, E. C., Meador, C. K., & Simpson, D. C. (1969). Correlation of whole-body impedance with total body water volume. Journal of Applied Physiology, 27(4), 531–534. PMID:4898406.

    Article  Google Scholar 

  • Holder, D. S., & Temple, A. J. (1993). Effectiveness of the Sheffield EIT system in distinguishing patients with pulmonary pathology from a series of normal subjects. In D. S. Holder (Ed.), Clinical and physiological applications of electrical impedance tomography (1st ed., pp. 277–298). London: CRC Press. ISBN-13: 978–1857281644.

    Google Scholar 

  • Hong, J.-L., Lan, K.-C., & Jang, L.-S. (2012). Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement. Sensors and Actuators B: Chemical, 173, 927–934. https://doi.org/10.1016/j.snb.2012.06.046.

    Article  Google Scholar 

  • Houtveen, J. H., Groot, P. F., & de Geus, E. J. (2006). Validation of the thoracic impedance derived respiratory signal using multilevel analysis. International Journal of Psychophysiology, 59(2), 97–106. https://doi.org/10.1016/j.ijpsycho.2005.02.003.

    Article  Google Scholar 

  • Huerta-Franco, M. R., Vargas-Luna, M., Montes-Frausto, J. B., Flores-Hernández, C., & Morales-Mata, I. (2012). Electrical bioimpedance and other techniques for gastric emptying and motility evaluation. World Journal of Gastrointestinal Pathophysiology, 3(1), 10–18. https://doi.org/10.4291/wjgp.v3.i1.10.

    Article  Google Scholar 

  • Khalil, S. F., Mohktar, M. S., & Ibrahim, F. (2014). The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors, 14(6), 10895–10928. https://doi.org/10.3390/s140610895.

    Article  Google Scholar 

  • Khalil, S. F., Mohktar, M. S., & Ibrahim, F. (2016). Bioimpedance vector analysis in diagnosing severe and non-severe dengue patients. Sensors, 16(6), 911. https://doi.org/10.3390/s16060911.

    Article  Google Scholar 

  • Khan, S., Mahara, A., Hyams, E. S., Schned, A. R., & Halter, R. J. (2016). Prostate cancer detection using composite impedance metric. IEEE Transactions on Medical Imaging, 35(12), 2513–2523. https://doi.org/10.1109/TMI.2016.2578939.

    Article  Google Scholar 

  • Kim, J. S., Lee, J. Y., Park, H., Han, B. G., Choi, S. O., & Yang, J. W. (2014). Estimation of body fluid volume by bioimpedance spectroscopy in patients with hyponatremia. Yonsei Medical Journal, 55(2), 482–486. https://doi.org/10.3349/ymj.2014.55.2.482.

    Article  Google Scholar 

  • Kose, S. B., Hur, E., Magden, K., Yildiz, G., Colak, D., Kucuk, E., et al. (2015). Bioimpedance spectroscopy for the differential diagnosis of hyponatremia. Renal Failure, 37(6), 947–950. https://doi.org/10.3109/0886022X.2015.1040418.

    Article  Google Scholar 

  • Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., & Mattson, R. H. (1966). Development and evaluation of an impedance cardiac output system. Aerospace Medicine, 37(12), 1208–1212. PMID: 5339656.

    Google Scholar 

  • Kushner, R. F., Schoeller, D. A., Fjeld, C. R., & Danford, L. (1992). Is the impedance index (ht2/R) significant in predicting total body water? The American Journal of Clinical Nutrition, 56(5), 835–839. PMID:1415001.

    Article  Google Scholar 

  • Kyle, U. G., Earthman, C. P., Pichard, C., & Coss-Bu, J. A. (2015). Body composition during growth in children: Limitations and perspectives of bioelectrical impedance analysis. European Journal of Clinical Nutrition, 69(12), 1298–1305. https://doi.org/10.1038/ejcn.2015.86.

    Article  Google Scholar 

  • Langer, R. D., Borges, J. H., Pascoa, M. A., Cirolini, V. X., Guerra-Júnior, G., & Gonçalves, E. M. (2016). Validity of bioelectrical impedance analysis to estimation fat-free mass in the Army cadets. Nutrients, 8(3), 121. https://doi.org/10.3390/nu8030121.

    Article  Google Scholar 

  • Lardiés-Sánchez, B., Sanz-Paris, A., Boj-Carceller, D., & Cruz-Jentoft, A. J. (2016). Systematic review: Prevalence of sarcopenia in ageing people using bioelectrical impedance analysis to assess muscle mass. European Geriatric Medicine, 7(3), 256–261. https://doi.org/10.1016/j.eurger.2016.01.014.

    Article  Google Scholar 

  • Lorne, E., Mahjoub, Y., Diouf, M., Sleghem, J., Buchalet, C., Guinot, P. G., et al. (2014). Accuracy of impedance cardiography for evaluating trends in cardiac output: A comparison with oesophageal Doppler. British Journal of Anaesthesia, 113(4), 596–602. https://doi.org/10.1093/bja/aeu136.

    Article  Google Scholar 

  • Lukaski, H. C. (2013). Evolution of bioimpedance: A circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. European Journal of Clinical Nutrition, 67(Suppl 1), S2–S9. https://doi.org/10.1038/ejcn.2012.149.

    Article  Google Scholar 

  • Lukaski, H. C., Johnson, P. E., Bolonchuk, W. W., & Lykken, G. I. (2016). Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American Journal of Clinical Nutrition, 41(4), 810–817. PMID:3984933.

    Article  Google Scholar 

  • Maass, S. W., Roekaerts, P. M., & Lancé, M. D. (2014). Cardiac output measurement by bioimpedance and noninvasive pulse contour analysis compared with the continuous pulmonary artery thermodilution technique. Journal of Cardiothoracic and Vascular Anesthesia, 28(3), 534–539. https://doi.org/10.1053/j.jvca.2014.01.007.

    Article  Google Scholar 

  • Macfarlane, D. J., Chan, N. T., Tse, M. A., & Joe, G. M. (2016). Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention. Journal of Sports Sciences, 34(12), 1176–1181. https://doi.org/10.1080/02640414.2015.1096416.

    Article  Google Scholar 

  • Malvehy, J., Hauschild, A., Curiel-Lewandrowski, C., Mohr, P., Hofmann-Wellenhof, R., Motle, R., et al. (2014). Clinical performance of the Nevisense system in cutaneous melanoma detection: An international, multi-centre, prospective and blinded clinical trial on efficacy and safety. The British Journal of Dermatology, 171(5), 1099–1107. https://doi.org/10.1111/bjd.13121.

    Article  Google Scholar 

  • Maskarinec, G., Morimoto, Y., Laguana, M. B., Novotny, R., & Leon-Guerrero, R. T. (2016). Bioimpedence to assess breast density as a risk factor for breast cancer in adult women and adolescent girls. Asian Pacific Journal of Cancer Prevention, 17(1), 65–71. https://doi.org/10.7314/APJCP.2016.17.1.65.

    Article  Google Scholar 

  • Masuda, T., & Komiya, S. (2004). A prediction equation for total body water from bioelectrical impedance in Japanese children. Journal of Physiological Anthropology and Applied Human Science, 23(2), 35–39. https://doi.org/10.2114/jpa.23.35.

    Article  Google Scholar 

  • Matias, C. N., Santos, D. A., Júdice, P. B., Magalhães, J. P., Minderico, C. S., Fields, D. A., et al. (2016). Estimation of total body water and extracellular water with bioimpedance in athletes: A need for athlete-specific prediction models. Clinical Nutrition, 35(2), 468–474. https://doi.org/10.1016/j.clnu.2015.03.013.

    Article  Google Scholar 

  • Mishra, V., Schned, A. R., Hartov, A., Heaney, J. A., Seigne, J., & Halter, R. J. (2013). Electrical property sensing biopsy needle for prostate cancer detection. Prostate, 73(15), 1603–1613. https://doi.org/10.1002/pros.22695.

    Google Scholar 

  • Moawad, F. J., Betteridge, J. D., Boger, J. A., Cheng, F. K., Belle, L. S., Chen, Y. J., et al. (2013). Reflux episodes detected by impedance in patients on and off esomeprazole: A randomised double-blinded placebo-controlled crossover study. Alimentary Pharmacology & Therapeutics, 37(10), 1011–1018. https://doi.org/10.1111/apt.12301.

    Article  Google Scholar 

  • Mohr, P., Birgersson, U., Berking, C., Henderson, C., Trefzer, U., Kemeny, L., et al. (2013). Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Skin Research and Technology, 19, 75–83. https://doi.org/10.1111/srt.12008.

    Article  Google Scholar 

  • Neves, E. B., Pino, A. V., de Almeida, R. M., & de Souza, M. N. (2009). Knee bioelectric impedance assessment in healthy/with osteoarthritis subjects. Physiological Measurement, 31(2), 207–219. https://doi.org/10.1088/0967-3334/31/2/007.

    Article  Google Scholar 

  • Paek, D., & McCool, D. (1992). Breathing patterns during varied activities. Journal of Applied Physiology, 73, 887–893. PMID:1400052.

    Article  Google Scholar 

  • Pandya, H. J., Kim, H. T., Roy, R., Chen, W., Cong, L., Zhong, H., et al. (2014). Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements. Sensors & Actuators B: Chemical, 199, 259–268. https://doi.org/10.1016/j.snb.2014.03.065.

    Article  Google Scholar 

  • Perez, W., & Tobin, M. J. (1985). Separation of factor responsible for change in breathing pattern induced by instrumentation. Journal of Applied Physiology, 59, 1515–1520. PMID:4066581.

    Article  Google Scholar 

  • Pichonnaz, C., Bassin, J. P., Lécureux, E., Currat, D., & Jolles, B. M. (2015). Bioimpedance spectroscopy for swelling evaluation following total knee arthroplasty: A validation study. BMC Musculoskeletal Disorders, 16, 100. https://doi.org/10.1186/s12891-015-0559-5.

    Article  Google Scholar 

  • Porter, E., Bahrami, H., Santorelli, A., Gosselin, B., Rusch, L. A., & Popovic, M. (2016). A wearable microwave antenna Array for time-domain breast tumor screening. IEEE Transactions on Medical Imaging, 35(6), 1501–1509. https://doi.org/10.1109/TMI.2016.2518489.

    Article  Google Scholar 

  • Ravi, K., & Katzka, D. A. (2016). Esophageal impedance monitoring: Clinical pearls and pitfalls. The American Journal of Gastroenterology, 111(9), 1245–1256. https://doi.org/10.1038/ajg.2016.256.

    Article  Google Scholar 

  • Rubbieri, G., Mossello, E., & Di Bari, M. (2014). Techniques for the diagnosis of sarcopenia. Clinical Cases in Mineral and Bone Metabolism, 11(3), 181–184. PMCID: PMC4269140.

    Google Scholar 

  • Salazar, Y., Bragos, R., Casas, O., Cinca, J., & Rosell, J. (2004). Transmural versus nontransmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium. IEEE Transactions on Biomedical Engineering, 51(8), 1421–1427. https://doi.org/10.1109/TBME.2004.828030.

    Article  Google Scholar 

  • Sánchez, B., Vandersteen, G., Martin, I., Castillo, D., Torrego, A., Riu, P. J., et al. (2013). In vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedure. A feasibility study. Medical Engineering & Physics, 35(7), 949–957. https://doi.org/10.1016/j.medengphy.2012.09.004.

    Article  Google Scholar 

  • Schwan, H. P. (1957). Electrical properties of tissue and cell suspensions. Advances in Biological and Medical Physics, 5, 147–209. PMID:13520431.

    Article  Google Scholar 

  • Schwan, H. P., & Kay, C. F. (1957a). Capacitive properties of body tissues. Circulation Research, 5(4), 439–443. PMID:13447191.

    Article  Google Scholar 

  • Schwan, H. P., & Kay, C. F. (1957b). The conductivity of living tissues. Annals of the New York Academy of Sciences, 65(6), 1007–1013. PMID:13459187.

    Article  Google Scholar 

  • Seward, C., Skolny, M., Brunelle, C., Asdourian, M., Salama, L., & Taghian, A. G. (2016). A comprehensive review of bioimpedance spectroscopy as a diagnostic tool for the detection and measurement of breast cancer-related lymphedema. Journal of Surgical Oncology, 114(5), 537–542. https://doi.org/10.1002/jso.24365.

  • Shah, C., Vicini, F. A., & Arthur, D. (2016). Bioimpedance spectroscopy for breast cancer related lymphedema assessment: Clinical practice guidelines. The Breast Journal, 22(6), 645–650. https://doi.org/10.1111/tbj.12647.

  • Stick, S. M., Ellis, E., LeSouëf, P. N., & Sly, P. D. (1992). Validation of respiratory inductance plethysmography (“Respitrace”) for the measurement of tidal breathing parameters in newborns. Pediatric Pulmonology, 14(3), 187–191. https://doi.org/10.1002/ppul.1950140308.

    Article  Google Scholar 

  • Sun, S. S., Chumlea, W. C., Heymsfield, S. B., Lukaski, H. C., Schoeller, D., Friedl, K., et al. (2003). Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. The American Journal of Clinical Nutrition, 77, 331–440. PMID:12540391.

    Article  Google Scholar 

  • Tyagi, R., Mishra, S., Gaur, N., Panwar, A., Saini, D., Singh, K., et al. (2016). Bioelectric impedance phase angle in carcinoma prostate - a hospital-based study. International Journal of Medical Science and Public Health, 5(9), 1826–1830. https://doi.org/10.5455/ijmsph.2016.30122015335.

    Article  Google Scholar 

  • Verney, J., Metz, L., Chaplais, E., Cardenoux, C., Pereira, B., & Thivel, D. (2016). Bioelectrical impedance is an accurate method to assess body composition in obese but not severely obese adolescents. Nutrition Research, 36(7), 663–670. https://doi.org/10.1016/j.nutres.2016.04.003.

    Article  Google Scholar 

  • Voscopoulos, C., Brayanov, J., Ladd, D., Lalli, M., Panasyuk, A., & Freeman, J. (2013). Evaluation of a novel noninvasive respiration monitor providing continuous measurement of minute ventilation in ambulatory subjects in a variety of clinical scenarios. Anesthesia & Analgesia, 117(1), 91–100. https://doi.org/10.1213/ANE.0b013e3182918098.

    Article  Google Scholar 

  • Voscopoulos, C., Ladd, D., Campana, L., & George, E. (2014). Non-invasive respiratory volume monitoring to detect apnea in post-operative patients: Case series. Journal of Clinical Medicine Research, 6(3), 209–214. https://doi.org/10.14740/jocmr1718w.

    Google Scholar 

  • Weitzen, R., Epstein, N., Shoenfeld, Y., & Zimlichman, E. (2007). Diagnosing diseases by measurement of electrical skin impedance: A novel technique. Annals of the New York Academy of Sciences, 1109, 185–192. https://doi.org/10.1196/annals.1398.022.

    Article  Google Scholar 

  • Wickramasinghe, V. P., Lamabadusuriya, S. P., Cleghorn, G. J., & Davies, P. S. W. (2008). Assessment of body composition in Sri Lankan children: Validation of a bioelectrical impedance prediction equation. European Journal of Clinical Nutrition, 62(10), 1170–1177. https://doi.org/10.1038/sj.ejcn.1602835.

    Article  Google Scholar 

  • Woltjer, H. H., Bogaard, H. J., & de Vries, P. M. (1997). The technique of impedance cardiography. European Heart Journal, 18(9), 1396–1403. PMID:9458444.

    Article  Google Scholar 

  • Yazdanian, H., Mahnam, A., Edrisi, M., & Esfahani, M. A. (2016). Design and implementation of a portable impedance cardiography system for noninvasive stroke volume monitoring. Journal of Medical Signals and Sensors, 6(1), 47–56. PMID:27014612.

    Google Scholar 

  • Zhang, X., Chatwin, C., & Barber, D. C. (2015). A feasibility study of a rotary planar electrode array for electrical impedance mammography using a digital breast phantom. Physiological Measurement, 6(6), 1311–1335. https://doi.org/10.1088/0967-3334/36/6/131.

    Article  Google Scholar 

  • Zhang, X., Wang, W., Sze, G., Barber, D., & Chatwin, C. (2014). An image reconstruction algorithm for 3-D electrical impedance mammography. IEEE Transactions on Medical Imaging, 33(12), 2223–2241. https://doi.org/10.1109/TMI.2014.2334475.

    Article  Google Scholar 

  • Zhou, L. Y., Wang, Y., Lu, J. J., Lin, L., Cui, R. L., Zhang, H. J., et al. (2014). Accuracy of diagnosing gastroesophageal reflux disease by Gerd Q, esophageal impedance monitoring and histology. Journal of Digestive Diseases, 15(5), 230–238. https://doi.org/10.1111/1751-2980.12135.

    Article  Google Scholar 

  • Zouridakis, A., Simos, Y. V., Verginadis, I. I., Charalabopoulos, K., Ragos, V., Dounousi, E., et al. (2016). Correlation of bioelectrical impedance analysis phase angle with changes in oxidative stress on end-stage renal disease patients, before, during, and after dialysis. Renal Failure, 38(5), 738–743. https://doi.org/10.3109/0886022X.2016.1158042.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Miguel Vargas Luna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vargas Luna, F.M., Balleza-Ordaz, M., Huerta Franco, M.R., Riu, P. (2018). Electrical Impedance Signal Analysis for Medical Diagnosis. In: Simini, F., Bertemes-Filho, P. (eds) Bioimpedance in Biomedical Applications and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-74388-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74388-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74387-5

  • Online ISBN: 978-3-319-74388-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics