Skip to main content

Electrical Impedance Tomography to Detect Trends in Pulmonary Oedema

  • Chapter
  • First Online:
Bioimpedance in Biomedical Applications and Research

Abstract

The use of electrical impedance tomography to monitor water in the lungs is the starting point to review hardware design options. The recommended design includes standard boards, multiplexers and a modified Howland current source. The inverse problem is described, and images obtained with original IMPETOM (492 pixels), NOSER (2048 pixels) and GREIT (1024 pixels) algorithms are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, A., et al. (2009). GREIT: A unified approach to 2D linear EIT reconstruction of lung images. Physiological Measurement, 30(6), S35–S55.

    Article  Google Scholar 

  • Alfaro, N., Arregui, M., Martinucci, F., Santos, E., & Simini, F. (2016). Audio codec and digital signal processor for an electrical impedance tomography system. In II Lat. Am. Conf. Bioimpedance, CLABIO 2015 (pp. 16–19).

    Google Scholar 

  • Arregui, M., Santos, E., & Simini, F. (2016). Test bench to validate audio codec kit as EIT complex voltage measurement circuit. In VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga.

    Google Scholar 

  • Barber, D. C., & Brown, B. H. (1984). Applied potential tomography. Journal of Physics E: Scientific Instruments, 17, 723–733.

    Article  Google Scholar 

  • Bera, T. K., & Nagaraju, J. (2009). A Simple instrumentation calibration technique for Electrical Impedance Tomography (EIT) using a 16-electrode phantom. In Automation science and engineering, 2009. CASE 2009. IEEE International Conference on (pp. 347–352).

    Google Scholar 

  • Borsic, A., Graham, B., Adler, A., & Lionheart, W. (2007). Total variation regularization in electrical impedance tomography (techreport). Manchester, UK.

    Google Scholar 

  • Dräger. (2011). PulmoVista 500 Data Sheet.

    Google Scholar 

  • EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (Version 3.5).

    Google Scholar 

  • Ferreira, A., Rodríguez, A., & Simini, F. (2002). IMPETOM-C Tomógrafo de Impedancia Eléctrica. Academic thesis, Universidad de la Republica, Montevideo.

    Google Scholar 

  • Gaggero, P. O., Adler, A., Brunner, J., & Seitz, P. (2012). Electrical impedance tomography system based on active electrodes. Physiological Measurement, 33(5), 831.

    Article  Google Scholar 

  • Gonzalez, S., Liguori, A., & Simini, F. (2005). IMPETOM Academic thesis.

    Google Scholar 

  • Hamidi, S. A., Jafari, R., Nia, A. M., & Soleimani, M. (2010). Design and implementation of a DSP-based digital phase sensitive demodulation for an EIT system. Journal of Physics Conference Series, 224(1).

    Google Scholar 

  • Hartman, R., Lobo, J., Ruétalo, M., & Simini, F. (2002). IMPETOM-I Tomógrafo de Impedancia Eléctrica. Academic thesis, Universidad de la Republica, Montevideo.

    Google Scholar 

  • Quinteros, W., & Simini F. (2007) IMPETOM-48 Tomografo de Impedancia Electrica con tres hileras de electrodos. Academic thesis, Universidad de la Republica, Montevideo.

    Google Scholar 

  • Santos, E. (2014). Alternativas de proyecto tendientes a un tomógrafo por impedancia eléctrica para la presentación del estado edemático en tiempo real. Tesis Maest, Univ. la República, Uruguay, p. 199.

    Google Scholar 

  • Santos, E., & Simini, F. (2012). Electrical impedance tomography for pulmonary oedema monitoring: Review and updated design. Journal of Physics Conference Series, 407, 12024.

    Article  Google Scholar 

  • Santos, E., & Simini, F. (2013). Comparison of EIT reconstruction techniques applied to IMPETOM. 13th International Conf. Bioinformatics and Bioengineering, Chania, Greece

    Google Scholar 

  • Santos, S., Rivero, D. E. L., & Eduardo, L. (2012). Datos de la Beca Personas involucradas.

    Google Scholar 

  • Saulnier, G. (2004). EIT instrumentation. In D. Holder (Ed.), Electric impedance tomography: Methods, history and applications (p. 65). London: IOP Publishing.

    Google Scholar 

  • Soleimani, M. (2006). Electrical impedance tomography system: An open access circuit design. Biomedical Engineering Online, 5(28).

    Google Scholar 

  • Swisstom, A. G. Swisstom EIT System.

    Google Scholar 

  • Texas Instruments. (2011). TMS320C6713B.

    Google Scholar 

  • Wang, C., Liu, J., & Wang, H. (2005a). Pipeline data acquisition method in the EIT system. In Instrumentation and measurement technology conference, 2005. IMTC 2005. Proceedings of the IEEE (Vol. 1, pp. 437–440).

    Google Scholar 

  • Wang, M., Ma, Y., Holliday, N., Dai, Y., Williams, R. A., & Lucas, G. (2005b). A high-performance EIT system. Sensors Journal, IEEE, 5(2), 289–299.

    Article  Google Scholar 

  • Webster, J. (2010). Medical instrumentation. Application and design. Hoboken, NJ: Wiley.

    Google Scholar 

  • Xu, G., Zhang, S., Wu, H., Yang, S., Geng, D., Yan, W., et al. (2005). The acquisition hardware system with direct digital synthesis and filtered back-projection imaging in electrical impedance tomography. In Engineering in medicine and biology society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the (pp. 7758–7761).

    Google Scholar 

Download references

Acknowledgements

Interest in electrical bioimpedance and motivation to develop EIT systems was originated by a clinical request by Professor Javier Hurtado and associates Dr. Walter Olivera and Dr. Cristina Santos in 1986, at that time active in the foundation of the Pulmonary Functional Testing Laboratory of the University Hospital of Uruguay. Pioneering work by Dr. Fernando Nieto—prematurely deceased 2001—with one of the authors gave as a result our first bioimpedance spectroscopic tetra-electrode instrument in 1994 which prompted us to tackle the development of an EIT device with successive prototype versions. Editorial assistance with intensive care insight and counselling by Dr. Bruno Simini of Ospedale di Lucca, Italy, was very much appreciated and is greatly thanked for. The work of the following students since 1994 is acknowledged here: Cecilia Frugoni, Ramiro Escuder, Lauro Artía, Raúl Hartman, Jorge Lobo, Mateo Ruétalo, Adriana Ferreira, Alfredo Rodriguez, Santiago González, Andrés Liguori, Walter Quinteros, Nicolás Alfaro and Fernanda Martinucci. Special thanks are due to Professor Roberto Markarian and to Dr. Pablo Musé for their interest and suggestions during their 2013 graduate course on Real and Functional Analysis. Several colleagues have given substantial help to this work including, but not limited to, Pablo Mazzara, Rafael Canetti, Linder Reyes and Daniel Geido.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Simini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simini, F., Santos, E., Arregui, M. (2018). Electrical Impedance Tomography to Detect Trends in Pulmonary Oedema. In: Simini, F., Bertemes-Filho, P. (eds) Bioimpedance in Biomedical Applications and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-74388-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74388-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74387-5

  • Online ISBN: 978-3-319-74388-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics