Skip to main content

Electrical Impedance Spectroscopy

  • Chapter
  • First Online:
Bioimpedance in Biomedical Applications and Research

Abstract

This chapter gives some background on impedance spectroscopy and tissue impedance but also about the instrumentation used for measuring transfer impedance of a biological material under study. The instrumentation concerned here is the current source for applying a current to tissue and the differential amplifier for measuring the resultant voltage. It shows also the main characteristics of the excitation source used for driving a constant current into the biological material under study and those of the receive circuit used to measure the resultant differential voltage. The major source of errors due to the nonideal characteristics of the instrumentation is also discussed, including the measuring circuit ones. The desired characteristics for a drive and measuring circuit on EIS are presented and some discussions are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bertemes-Filho, P. (2002). Characterisation using an impedance spectroscopy probe. Ph.D. Thesis, Sheffield, England.

    Google Scholar 

  • Bertemes-Filho, P., Brown, B. H., & Wilson, A. J. (2000). A comparison of a modified Howland circuits as current generators with current mirror type circuits. Physiological Measurement, 21(Suppl. 1A), 1–6.

    Article  Google Scholar 

  • Bertemes-Filho, P., Felipe, A., & Vincence, V. C. (2013). High accurate Howland current source: Output constraints analysis article. Circuits and Systems, 4(7), 451–458.

    Article  Google Scholar 

  • Bertemes-Filho, P., Lima, R. G., Amato, M. B. P., & Tanaka, H. (2004). Capacitive-compensated current source used in electrical impedance tomography. In International conference on electrical bio-impedance, Gdansk, Poland, 20–24 June 2004.

    Google Scholar 

  • Bertemes-Filho, P., Lima, R. G., & Tanaka, H. (2003). An adaptive current source using a negative impedance converter (NIC) for electrical impedance tomography (EIT). In International Congress of Mechanical Engineering, June, Sao Paulo, Brazil.

    Google Scholar 

  • Bertemes-Filho, P., Negri, L. H., & Vincence, V. C. (2015). Designing a mirrored Howland circuit with a particle swarm optimisation algorithm. International Journal of Electronics, 1, 1029–1037.

    Google Scholar 

  • Bertemes-Filho, P., Paterno, A.S., & Pereira, R. M. (2009). Multichannel bipolar current source used in electrical impedance spectroscopy: Preliminary results. In O. Dössel, & W. C. Schlegel (Eds.), World Congress on Medical Physics and Biomedical engineering, September 7–12, 2009, Munich, Germany. IFMBE proceedings, Vol 25/7. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Bertemes-Filho, P., & Vincence, V. C. (2016). Howland current source for wideband bioimpedance application. In XVI International Conference on Electrical Bioimpedance, June.

    Google Scholar 

  • Blad, B., Lindstrom, K., Bertenstam, L., Person, B. R. R., & Holmer, N. G. (1994). A current injecting device for electrical impedance tomography. Physiological Measurement, 15(Suppl. 2A), 69–77.

    Article  Google Scholar 

  • Bragós, R., Rosell, J., & Riu, P. J. (1994). A wide-band AC-coupled current source for electrical impedance tomography. Physiological Measurement, 15(Suppl. 2A), 91–99.

    Article  Google Scholar 

  • Brown, B. H., Smallwood, R. H., Barber, D. C., Lawford, P. V., & Hose, D. R. (1999). Medical physics and biomedical engineering. Bristol: Institute of Physics Publishing.

    Book  Google Scholar 

  • Casas, O., Rosell, J., Bragós, R., Lozano, A., & Riu, P. J. (1996). A parallel broadband real-time system for electrical impedance tomography. Physiological Measurement, 17(Suppl. 4A), 1–6.

    Article  Google Scholar 

  • Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics. The Journal of Chemical Physics, 9, 341–351.

    Article  Google Scholar 

  • Cook, R. D., Saulnier, G. J., Gisser, D. G., Goble, J. C., Newell, J. C., & Isaacson, D. (1994). ACT3: A high-speed, high-precision electrical impedance tomograph. IEEE Transactions on Biomedical Engineering, 41(8), 713–721.

    Article  Google Scholar 

  • Cusick, G., Holder, D. S., Birquett, A., & Boone, K. (1994). A system for impedance imaging epilepsy in ambulatory human subjects. Innovation et technologie en biologie et médecine, 15, 33–39.

    Google Scholar 

  • Denyer, C. W., Lidgey, F. J., McLeod, C. N., & Zhu, Q. S. (1994). Current source calibration simplifies high-accuracy current source measurement. Innovation et technologie en biologie et médecine, 15(Spécial 1), 47–55.

    Google Scholar 

  • Denyer, C. W., Lidgey, F. J., Zhu, Q. S., & McLeod, C. N. (1993). High output impedance voltage controlled current source for bio-impedance instrumentation. Proceedings of the 15th annual international conference of the IEEE engineering in medicine and biology society, San Diego, 15(2), 1026–1027.

    Google Scholar 

  • Denyer, C. W., Lidgey, F. J., Zhu, Q. S., & McLeod, C. N. (1994). A high output impedance current source. Physiological Measurement, 15(Suppl. 2A), 79–82.

    Article  Google Scholar 

  • Foster, R. F., & Schwan, H. P. (1989). Dielectric properties of tissues and biological materials: A critical review. Critical Reviews in Biomedical Engineering, 17(1), 25–104.

    Google Scholar 

  • González-Correa, C. A., Brown, B. H., Smallwood, R. H., Kalia, N., Stoddard, C. J., Stephenson, T. J., et al. (1999). Virtual biopsies in Barrett’s esophagus using an impedance probe. Annals of the New York Academy of Sciences, 873, 313–321.

    Article  Google Scholar 

  • Griffiths, H., & Ahmed, A. (1987). A dual-frequency applied potential tomography technique: Computer simulations. Clinical Physics and Physiological Measurement, 8(Suppl. A), 103–107.

    Article  Google Scholar 

  • Hart, B. L., & Barker, R. W. (1976). D.C. matching errors in the wilson current source. Electronics Letters, 12(15), 389–390.

    Article  Google Scholar 

  • Hollas, J. M. (1998). High resolution spectroscopy. Chichester: John Willey & Sons.

    Google Scholar 

  • Jossinet, J., Tourtel, G., & Jarry, R. (1994a). Performance and operation of a set of wideband current generators for EIT. Innovation et technologie en biologie et médecine, 15, 40–46.

    Google Scholar 

  • Jossinet, J., Tourtel, C., & Jarry, R. (1994b). Active current electrode for in vivo electrical impedance tomography. Physiological Measurement, 15(Suppl. 2A), 83–90.

    Article  Google Scholar 

  • Land, R., Cahill, B. P., Parve, T., Annus, P., & Min, M. (2011). Improvements in design of spectra of multisine and binary excitation signals for multi-frequency bioimpedance measurement. Conference proceedings of the IEEE engineering in medicine and biology society, Boston, MA, USA.

    Google Scholar 

  • Li, J., Joppek, C., & Faust, U. (1994). An isolated wideband current source used in multifrequency electrical impedance tomography. Innovation et technologie en biologie et médecine, 15, 63–68.

    Google Scholar 

  • Lozano, A., Rosell, J., & Pallás-Areny, R. (1990). Two-frequency impedance plephysmography real and imaginary parts. Medical & Biological Engineering & Computing, 28, 38–42.

    Article  Google Scholar 

  • Lu, L. (1995). Aspects of an electrical impedance tomography spectroscopy (EITS) system. Ph.D. Thesis, Sheffield: University of Sheffield, UK.

    Google Scholar 

  • Lu, L., & Brown, B. H. (1994). The electronic and electronic interface in an EIT spectroscopy system. Innovation et technologie en biologie et médecine, 15(1), 97–103.

    Google Scholar 

  • McAdams, E. T. (1987). A study of Electrode-Tissue Impedance Encountered in Cardiac Pacing. Thesis, lEEDS: University of Leeds, UK.

    Google Scholar 

  • Min, M, Pliquett, U., Nacke, T., Barthel, A., Annus, P., & Land, R. (2007). Signals in bioimpedance measurement: Different waveforms for different tasks. In H. Scharfetter & R. Merwa (Eds.), 13th International Conference on Electrical Bioimpedance and 8th Conference on Electrical Impedance Tomography, Graz, Austria.

    Google Scholar 

  • Nahvi, M., & Hoyle, B. S. (2009). Electrical impedance spectroscopy sensing for industrial processes. IEEE Sensors Journal, 9(12), 1808–1816.

    Article  Google Scholar 

  • Paavle, T., Min, M., & Parve, T. (2012). Aspects of using chirp excitation for estimation of bioimpedance spectrum. In S. Salih (Ed.), Fourier transform—Signal processing (pp. 237–256). Rijeka: InTech.

    Google Scholar 

  • Paterno, A. S., Negri, L. H., & Bertemes-Filho, P. (2012). Efficient computational techniques in bioimpedance spectroscopy. In G. R. Naik (Ed.), Applied biological engineering—Principles and practice. Rijeka: InTech. https://doi.org/10.5772/36307

    Google Scholar 

  • Pethig, R. (1984). Dielectric properties of biological materials: Biophysical and medical applications. IEEE Transactions on Electrical Insulation, 19, 453–474.

    Article  Google Scholar 

  • Pethig, R. (1987). Dielectric properties of body tissues. Clinical Physics and Physiological Measurement, 8(Suppl. A), 5–12.

    Article  Google Scholar 

  • Pliquett, U., Frense, D., Schönfeldt, M., Frätzer, C., Zhang, Y., Cahill, B., et al. (2010). Testing miniaturized electrodes for impedance measurements within the E-dispersion—A practical approach. Journal of Electrical Bioimpedance, 1, 41–55.

    Article  Google Scholar 

  • Raghed, A. O., Geddes, L. A., Bourland, J. D., & Tacker, W. A. (1992). Tetrapolar electrode system for measuring physiological events by impedance. Medical & Biological Engineering & Computing, 30, 115–117.

    Article  Google Scholar 

  • Record, P., Gadd, R., & Vinther, F. (1992). Multifrequency electrical impedance tomography. Clinical Physics and Physiological Measurement, 13(Suppl. 2A), 67–72.

    Article  Google Scholar 

  • Riu, P. J., Rosell, J., Lozano, A., & Pallás-Areny, R. (1992). A broadband system for multifrequency static imaging in electrical impedance tomography. Clinical Physics and Physiological Measurement, 13(Suppl A), 61–65.

    Article  Google Scholar 

  • Rigaud, B., & Morucci, J. P. (1996). Bioelectrical impedance techniques in medicine. Part III: Impedance imaging, first section: General concepts and hardware. Critical Reviews in Biomedical Engineering, 24(4–6), 467–597.

    Google Scholar 

  • Santos, S. F., & Bertemes-Filho, P. (2017). Note: Temperature effects in the modified Howland current source for electrical bioimpedance spectroscopy. Review of Scientific Instruments, 88(7), 076103.

    Article  Google Scholar 

  • Smith, R. W. M. (1990). Design of a real-time impedance imaging system for medical applications. Ph.D. Thesis, Sheffield: University of Sheffield, UK.

    Google Scholar 

  • Toumazou, C., & Lidgey, F. J. (1989). Novel current-mode instrumentation amplifier. Electronics Letters, 25, 228–230.

    Article  Google Scholar 

  • Waterworth, A., Brown, B. H., Smallwood, R., & Milnes, P. (2000). Cole equation modelling to measurements made using an impulse driven transfer impedance system. Physiological Measurement, 21, 137–144.

    Article  Google Scholar 

  • Webster, J. G. (1990). Electrical impedance tomography. Bristol: Adam Hilger Press.

    Google Scholar 

  • Wilson, B. (1981). A low-distortion bipolar feedback current amplifier technique. Proceedings of the IEEE, 69(11), 1514–1515.

    Article  Google Scholar 

  • Yang, Y., Kang, M., Lu, Y., Wang, J., Yue, J., & Gao, Z. (2010). Design of a wideband excitation source for fast bioimpedance spectroscopy. Measurement Science and Technology, 22, 013001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Bertemes-Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertemes-Filho, P. (2018). Electrical Impedance Spectroscopy. In: Simini, F., Bertemes-Filho, P. (eds) Bioimpedance in Biomedical Applications and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-74388-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74388-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74387-5

  • Online ISBN: 978-3-319-74388-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics