Skip to main content

Wavelet Analysis in Impedance Rheocardiography

  • Chapter
  • First Online:
Bioimpedance in Biomedical Applications and Research

Abstract

Impedance cardiography is an inexpensive, noninvasive technique for estimating hemodynamic parameters. Impedance cardiography can be used to obtain the ejection fraction of the left atrium and to monitor systolic time intervals. The wavelet spectrogram provides an illustrative representation of the rheocardiographic measurements. Time-frequency localization of the systolic cardiac wave allows us to define the parameters related to the stroke volume and to control beat-to-beat variations of cardiac parameters in the systolic and diastolic phases of the cardiac cycle. The advantage of the wavelet-based approach is demonstrated by an example of determining the stroke volume variation during the respiratory cycle. Wavelet-based processing of impedance cardiography signals reduces the influence of artifacts and the interference of breathing modulation and displays the morphological features of cardiac cycles. In particular, the advantages of the method are considered by the isometric test of patients with hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bour, J., & Kellett, J. (2008). Impedance cardiography – A rapid and cost-effective screening tool for cardiac disease. European Journal of Internal Medicine, 19(6), 399–405.

    Article  Google Scholar 

  • Bernstein, D. P., Henry, I. C., Lemmens, H. J., Chaltas, J. L., DeMaria, A. N., Moon, J. B., Kahn, A. M. (2015). Validation of stroke volume and cardiac output by electrical interrogation of the brachial artery in normals: Assessment of strengths, limitations, and sources of error. Journal of Clinical Monitoring and Computing, 29(6), 789–800.

    Article  Google Scholar 

  • Carvalho, P., Paiva, R., Couceiro, R., Henriques, J., Antunes, M., Quintal, I., Muehlsteff, J., Aubert, X. (2010). Comparison of systolic time interval measurement modalities for portable devices. Conference proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 606–609). IEEE Engineering in Medicine and Biology Society.

    Google Scholar 

  • Chabchoub, S., Mansouri, S., & Salah, R. (2016). Impedance cardiography signal denoising using discrete wavelet transform. Australasian Physical and Engineering Sciences in Medicine, 39(3), 655–663.

    Article  Google Scholar 

  • Chen, S. J., Gong, Z., & Duan, Q. L. (2014). Evaluation of heart function with impedance cardiography in acute myocardial infarction patients. International Journal of Clinical and Experimental Medicine, 7(3), 719–727.

    Google Scholar 

  • Cybulski, G. (2011). Ambulatory impedance cardiography: The systems and their applications. Lecture Notes in Electrical Engineering. Berlin: Springer.

    Google Scholar 

  • Devereux, R., Wachtell, K., Gerdts, E., Boman, K., Nieminen, M., Papademetriou, V., Rokkedal, J., Harris, K., Aurup, P., & Dahlof, B. (2004). Prognostic significance of left ventricular mass change during treatment of hypertension. Journal of the American Medical Association, 292(19), 2350–2356.

    Article  Google Scholar 

  • Dumler, A., Zubarev, M., Muraviev, N., Mamatova, A., Salnikova, N., Podtaev, S., Stepanov, R., & Frick, P. (2010). Wavelet analysis of bioimpendancometric data. Journal of Physics: Conference Series, 224(1), 012108.

    Google Scholar 

  • Ebrahim, M., Hegde, S., Printz, B., Abcede, M., Proudfoot, J. A., & Davis, C. (2016). Evaluation of impedance cardiography for measurement of stroke volume in congenital heart disease. Pediatric Cardiology, 37(8), 1453–1457.

    Article  Google Scholar 

  • Ermishkin, V., Lukoshkova, E., Bersenev, E., Saidova, M., Shitov, V. Vinogradova, O., & Khayutin, V. (2007). Beat-by-beat changes in pre-ejection period during functional tests evaluated by impedance aortography: A step to a left ventricular contractility monitoring. In IFMBE Proceedings: 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography (vol. 17, pp. 655–658).

    Google Scholar 

  • Hall, J. E., & Guyton, A. C. (2006). Textbook of Medical Physiology (11th ed.) New York: Elsevier.

    Google Scholar 

  • Holme, N., Rein, E., & Elstad, M. (2016). Cardiac stroke volume variability measured non-invasively by three methods for detection of central hypovolemia in healthy humans. European Journal of Applied Physiology, 116, 2187–2196.

    Article  Google Scholar 

  • Hu, X., Chen, S., Ren, R., Zhou, B., Qian, Y., Li, H., Xia, S. (2014). Adaptive filtering and characteristics extraction for Impedance Cardiography. Journal of Fiber Bioengineering and Informatics, 7(1), 81–90.

    Google Scholar 

  • Kirchhof, P., Sipido, K.R., Cowie, M.R., Eschenhagen, T., Fox, K.A.A., Katus, H., Schroeder, S., Schunkert, H., Priori, S., & E.C.R.E.A. Work (2014). The continuum of personalized cardiovascular medicine: A position paper of the European Society of Cardiology. European Heart Journal 35(46), 3250–3257.

    Google Scholar 

  • Kubicek, W., Karnegis, J., Patterson, R., Witsoe, D., Mattson, R. (1966). Development and evaluation of an impedance cardiac output system. Aerospace Medicine, 37(12), 1208–1212.

    Google Scholar 

  • Mallam, M., & Bhushana Rao, K. C. (2016). Efficient reference-free adaptive artifact cancellers for impedance cardiography based remote health care monitoring systems. SpringerPlus, 5(1), 1078.

    Article  Google Scholar 

  • Meziani, F., Debbal, S., & Atbi, A. (2012). Analysis of phonocardiogram signals using wavelet transform. Journal of Medical Engineering and Technology, 36(6), 283–302.

    Article  Google Scholar 

  • Morris, R., Sunesara, I., Darby, M., Novotny, S., Kiprono, L., Bautista, L., Sawardecker, S., Bofill, J., Anderson, B., & Martin, J. N. (2016). Impedance cardiography assessed treatment of acute severe pregnancy hypertension: A randomized trial. The Journal of Maternal-Fetal & Neonatal Medicine, 29(2), 171–176.

    Article  Google Scholar 

  • Morris, R., Sunesara, I., Rush, L., Anderson, B., Blake, P. G., Darby, M., Sawardecker, S., Novotny, S., Bofill, J. A., & Martin Jr., J. N. (2014). Maternal hemodynamics by thoracic impedance cardiography for normal pregnancy and the postpartum period. Obstetrics and Gynecology, 123(2, 1), 318–324.

    Google Scholar 

  • Payseur, J., Rigney, J., Turner, S., Wu, X., Murphy, D., & Rossman, E. (2016). Evaluation of a method utilizing PhysioFlow, a novel signal morphology-based form of impedance cardiography, to measure cardiac output in the conscious beagle. Journal of Pharmacological and Toxicological Methods, 81, 115–119.

    Article  Google Scholar 

  • Pickett, B. R., & Buell, J. C. (1993). Usefulness of the impedance cardiogram to reflect left-ventricular diastolic function. American Journal of Cardiology, 71(12), 1099–1103.

    Article  Google Scholar 

  • Podtaev, S., Stepanov, R., Smirnova, E., & Loran, E. (2015). Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction. Microvascular Research, 97, 109–114.

    Article  Google Scholar 

  • Stepanov, R., Podtaev, S., Dumler, A., & Chugainov, S. (2016a). Assessment of cardiac time intervals by wavelet transform of the impedance cardiogram. Technology and Health Care, 24, S803–S809.

    Article  Google Scholar 

  • Stepanov, R., Podtaev, S., Dumler, A., & Chugainov, S. (2016b). Assessment of systolic heart function by wavelet analysis of the impedance cardiogram. In F. Simini & P. Bertemes-Filho (Eds.), IFMBE Proceedings: II Latin American Conference on Bioimpedance: 2nd CLABIO, Montevideo, September 30 - October 02, 2015 (pp. 32–35). Singapore: Springer.

    Google Scholar 

  • Van Eijnatten, M., Van Rijssel, M., Peters, R., Verdaasdonk, R., & Meijer, J. (2014). Comparison of cardiac time intervals between echocardiography and impedance cardiography at various heart rates. Journal of Electrical Bioimpedance, 5, 2–8.

    Google Scholar 

Download references

Acknowledgements

The work is supported by the Russian Science Foundation under project 14-15-00809.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodion Stepanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stepanov, R., Dumler, A., Podtaev, S., Frick, P. (2018). Wavelet Analysis in Impedance Rheocardiography. In: Simini, F., Bertemes-Filho, P. (eds) Bioimpedance in Biomedical Applications and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-74388-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74388-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74387-5

  • Online ISBN: 978-3-319-74388-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics