Skip to main content

Clinical Applications of Electrical Impedance Spectroscopy

  • Chapter
  • First Online:
Bioimpedance in Biomedical Applications and Research

Abstract

The aim of this chapter is to give a general view of different applications where EBI and EBIS can play a role. We offer a global glimpse to the readers and some bibliographic references on them, so that, if somebody has a particular interest, he/she can have an initial approach into it. Applications of electrical impedance tomography (EIT) are not considered (see chapter in this book by R Bayford and also Bayford and Tizzard 2012 and Holder 2005), but we do have included some EBIS applications not mentioned in some of the reviews previously published in the literature (Bera 2014, Coffman and Cohen 2013, and the series published in 1996 in the volume 24 of the journal Critical Reviews in Biomedical Engineering by: Valentinuzzi (1996), Rigaud et al. (1996), Valentinuzzi et al. (1996), Rigaud and Morucci (1996), Morucci and Marsili (1996), and Morucci and Rigaud (1996)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Brown et al. (2000), for instance, use R for R e, S for R i, and C for C m, while Grimmes and Martinsen (2000) use the symbols G, R, and C, respectively.

  2. 2.

    Some authors use α instead of 1 − α (Brown et al. 1999). Attention has to be paid to the expression being used, as, according to which one is selected, both alphas are complements to 1 (or 100). For example, using the first expression, α = 1 would mean α = 0 if the second expression is to be used, being both equivalent to the Debye model, i.e., the latter is a specific case of the Cole-Cole model.

  3. 3.

    MeSH is the thesaurus of Medline and PubMed by the National Center for Biotechnology Information (NCBI) and the National Library of Medicine (NLM) of the United States. Webpage: https://www.ncbi.nlm.nih.gov/mesh.

References

  • Aberg, P., Nicander, I., Hansson, J., Geladi, P., Holmgren, U., & Ollmar, S. (2004). Skin cancer identification using multifrequency electrical impedance—A potential screening tool. IEEE Transactions on Biomedical Engineering, 51(12), 2097–2102.

    Article  Google Scholar 

  • Ahn, A. C., & Martinsen, O. G. (2007). Electrical characterization of acupuncture points: Technical issues and challenges. Journal of Alternative and Complementary Medicine, 13(8), 817–824.

    Article  Google Scholar 

  • Ahn, A. C., Park, M., Shaw, J. R., McManus, C. A., Kaptchuk, T. J., & Langevin, H. M. (2010). Electrical impedance of acupuncture meridians: The relevance of subcutaneous collagenous bands. PLoS One, 5(7), e11907.

    Article  Google Scholar 

  • Arroyo, A. G., & Iruela-Arispe, M. L. (2010). Extracellular matrix, inflammation, and the angiogenic response. Cardiovascular Research, 86(2), 226–235.

    Article  Google Scholar 

  • Backman, V., & Roy, H. K. (2013). Advances in biophotonics detection of field carcinogenesis for Colon cancer risk stratification. Journal of Cancer, 4(3), 251–261.

    Article  Google Scholar 

  • Bardhan, K. D., Strugala, V., & Dettmar, P. W. (2012). Reflux revisited: Advancing the role of pepsin. International Journal of Otolaryngology, 2012, 646901.

    Article  Google Scholar 

  • Barrio, A. V., Eaton, A., & Frazier, T. G. (2015). A prospective validation study of bioimpedance with volume displacement in early-stage breast cancer patients at risk for lymphedema. Annals of Surgical Oncology, 22(Suppl 3), S370–S375.

    Article  Google Scholar 

  • Barter, S. J., & Hicks, I. P. (2000). Electrical impedance imaging of the breast (TranScan TS 2000): Initial UK experience. Breast Cancer Research, 2(Suppl 2), A11.

    Article  Google Scholar 

  • Bayford, R., & Tizzard, A. (2012). Bioimpedance imaging: An overview of potential clinical applications. Analyst, 137(20), 4635–4643.

    Article  Google Scholar 

  • Bayram, M., & Yancy, C. W. (2009). Transthoracic impedance cardiography: A noninvasive method of hemodynamic assessment. Heart Failure Clinics, 5(2), 161–168.

    Article  Google Scholar 

  • Beltran, N. E., Ceron, U., Sanchez-Miranda, G., Remolina, M., Godinez, M. M., Peralta, I. Y., et al. (2013). Incidence of gastric mucosal injury as measured by reactance in critically ill patients. Journal of Intensive Care Medicine, 28(4), 230–236.

    Article  Google Scholar 

  • Beltran, N. E., & Sacristan, E. (2015). Gastrointestinal ischemia monitoring through impedance spectroscopy as a tool for the management of the critically ill. Experimental Biology and Medicine (Maywood, N.J.), 240(7), 835–845.

    Article  Google Scholar 

  • Bera, T. K. (2014). Bioelectrical impedance methods for noninvasive health monitoring: A review. Journal of Medical Engineering, 2014, 381251.

    Article  Google Scholar 

  • Bernstein, D. P., Henry, I. C., Lemmens, H. J., Chaltas, J. L., DeMaria, A. N., Moon, J. B., et al. (2015). Validation of stroke volume and cardiac output by electrical interrogation of the brachial artery in normals: Assessment of strengths, limitations, and sources of error. Journal of Clinical Monitoring and Computing, 29(6), 789–800.

    Article  Google Scholar 

  • Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J. D., Serino, M., et al. (2014). Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterology, 18(14), 1077–1085.

    Google Scholar 

  • Blad, B., & Baldetorp, B. (1996). Impedance spectra of tumour tissue in comparison with normal tissue; a possible clinical application for electrical impedance tomography. Physiological Measurement, 17(Suppl 4A), A105–A115.

    Article  Google Scholar 

  • Boucsein, W. (2012). Electrodermal activity (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Boytsov, I. V., & Belousova, T. E. (2015). Interrelations between electrodermal activity and internal diseases. Fiziologiia Cheloveka, 41(6), 104–113.

    Google Scholar 

  • Brown, B. H., Smallwood, R. H., Barber, D. C., Lawford, P. V., & Hose, D. R. (1999). Medical physics and biomedical engineering. (Chap. 8 “Non-ionizing electromagnetic radiation: Tissue absorption and safety issues”, p. 231). Bristol, UK: Institute of Physics (IOP).

    Book  Google Scholar 

  • Brown, B. H., Tidy, J. A., Boston, K., Blackett, A. D., Smallwood, R. H., & Sharp, F. (2000). Relation between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet, 355(9207), 892–895.

    Article  Google Scholar 

  • Brown, J. M., & Hazen, S. L. (2015). The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annual Review of Medicine, 66, 343–359.

    Article  Google Scholar 

  • Casselbrant, A., Elias, E., Fändriks, L., & Wallenius, V. (2015). Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surgery for Obesity and Related Diseases, 11(1), 45–53.

    Article  Google Scholar 

  • Chandler, J. H., Culmer, P. R., Jayne, D. G., & Neville, A. (2015). A time-dependent model for improved biogalvanic tissue characterisation. Medical Engineering & Physics, 37(10), 956–960.

    Article  Google Scholar 

  • Charles, C. J., Rademaker, M. T., Melton, I. C., Gutfinger, D., Eigler, N. L., Qu, F., et al. (2015). Thoracic impedance measures tissue characteristics in the vicinity of the electrodes, not intervening lung water: Implications for heart failure monitoring. Journal of Clinical Monitoring and Computing, 29(1), 65–76.

    Article  Google Scholar 

  • Ching, C. T., Sun, T. P., Huang, S. H., Hsiao, C. S., Chang, C. H., Huang, S. Y., et al. (2010). A preliminary study of the use of bioimpedance in the screening of squamous tongue cancer. International Journal of Nanomedicine, 5, 213–220.

    Article  Google Scholar 

  • Coffman, F. D., & Cohen, S. (2013). Impedance measurements in the biomedical sciences. Studies in Health Technology and Informatics, 185, 185–205.

    Google Scholar 

  • Colina-Gallo, E., González-Correa, C. A., Dussán-Lubert, C., & Miranda-Mercado, D. A. (2016a). Segmental electrical bioimpedance measurements with a single lead (Electrode) displacement. IFMBE Proceedings, 54, 20–23.

    Article  Google Scholar 

  • Colina-Gallo, E., González-Correa, C. A., & Miranda-Mercado, D. A. (2016b). Correlation between algometry and electrical bioimpedance in subjects with and without fibromyalgia. IFMBE Proceedings, 54, 72–75.

    Article  Google Scholar 

  • Collier, R. J., & Ntui, J. A. (1994). In vivo measurements of the phase constants of transverse mechanical waves in a human tibia from 100 to 1000 Hz. Medical Engineering & Physics, 16(5), 379–383.

    Article  Google Scholar 

  • Cybulski, G., Strasz, A., Niewiadomski, W., & Gąsiorowska, A. (2012). Impedance cardiography: Recent advancements. Cardiology Journal, 19(5), 550–556.

    Article  Google Scholar 

  • Da Silva, T. M., & Alves, F. R. (2014). Ex vivo accuracy of Root ZX II, Root ZX Mini and RomiApex A-15 apex locators in extracted vital pulp teeth. The Journal of Contemporary Dental Practice, 15(3), 312–314.

    Article  Google Scholar 

  • Daghfous, H., El Ayeb, W., Alouane, L., & Tritar, F. (2014). Evaluation of nutritional status in lung cancer using bio electrical impedance analysis and mini nutritional assessment. La Tunisie Médicale, 92(12), 737–742.

    Google Scholar 

  • Donadio, C., Bozzoli, L., Colombini, E., Pisanu, G., Ricchiuti, G., Picano, E., et al. (2015). Effective and timely evaluation of pulmonary congestion: Qualitative comparison between lung ultrasound and thoracic bioelectrical impedance in maintenance hemodialysis patients. Medicine (Baltimore), 94(6), e473.

    Article  Google Scholar 

  • Eldarrat, A. H., High, A. S., & Kale, G. M. (2010). Age-related changes in ac-impedance spectroscopy studies of normal human dentine: Further investigations. Journal of Materials Science. Materials in Medicine, 21(1), 45–51.

    Article  Google Scholar 

  • El-Serag, H. B., Sweet, S., Winchester, C. C., & Dent, J. (2014). Update on the epidemiology of gastro-oesophageal reflux disease: A systematic review. Gut, 63(6), 871–880.

    Article  Google Scholar 

  • Fass, J., Silny, J., Braun, J., Heindrichs, U., Dreuw, B., Schumpelick, V., et al. (1994). Measuring esophageal motility with a new intraluminal impedance device. First clinical results in reflux patients. Scandinavian Journal of Gastroenterology, 29(8), 693–702.

    Article  Google Scholar 

  • Fernández, P. J., Méndez-Sánchez, S. C., Gonzalez-Correa, C. A., & Miranda, D. A. (2016). Could field cancerization be interpreted as a biochemical anomaly amplification due to transformed cells? Medical Hypotheses, 97, 107–111.

    Article  Google Scholar 

  • Friedman, M. F., Birxh, S., & Tiller, W. A. (1989). Towards the development of a mathematical model for acupuncture meridians. Acupuncture & Electro-Therapeutics Research, 14, 217–226.

    Article  Google Scholar 

  • Fukushima, Y., Yoda, T., Kokabu, S., Araki, R., Murata, T., Kitagawa, Y., et al. (2013). Evaluation of an oral moisture-checking device for screening dry mouth. Open Journal of Stomatology, 3, 440–446.

    Article  Google Scholar 

  • Giouvanoudi, A., Amaee, W. B., Sutton, J. A., Horton, P., Morton, R., Hall, W., et al. (2003). Physiological interpretation of electrical impedance epigastrography measurements. Physiological Measurement, 24(1), 45–55.

    Article  Google Scholar 

  • Golowasch, J., Thomas, G., Taylor, A. L., Patel, A., Pineda, A., Khalil, C., et al. (2009). Membrane capacitance measurements revisited: Dependence of capacitance value on measurement method in nonisopotential neurons. Journal of Neurophysiology, 102(4), 2161–2175.

    Article  Google Scholar 

  • Gong, B., Krueger-Ziolek, S., Moeller, K., Schullcke, B., & Zhao, Z. (2015). Electrical impedance tomography: Functional lung imaging on its way to clinical practice? Expert Review of Respiratory Medicine, 9(6), 721–737.

    Article  Google Scholar 

  • González-Correa, C. A. (2004). Toward a binary interpretation of acupuncture theory: Principles and practical consequences. Journal of Alternative and Complementary Medicine, 10(3), 573–579.

    Article  Google Scholar 

  • González-Correa, C. A., Brown, B. H., Smallwood, R. H., Kalia, N., Stoddard, C. J., Stephenson, T. J., et al. (1999). Virtual biopsies in Barrett’s esophagus using an impedance probe. Annals of the New York Academy of Sciences, 873, 313–321.

    Article  Google Scholar 

  • González-Correa, C. A., Brown, B. H., Smallwood, R. H., Kalia, N., Stoddard, C. J., Stephenson, T. J., et al. (2000). Assessing the conditions for in vivo electrical virtual biopsies in Barrett’s oesophagus. Medical & Biological Engineering & Computing, 38(4), 373–376.

    Article  Google Scholar 

  • Gonzalez-Correa, C. A., Brown, B. H., Smallwood, R. H., Stephenson, T. J., Stoddard, C. J., & Bardhan, K. D. (2003). Low frequency electrical bioimpedance for the detection of inflammation and dysplasia in Barrett’s oesophagus. Physiological Measurement, 24(2), 291–296.

    Article  Google Scholar 

  • Gonzalez-Correa, C. A., Mulett-Vásquez, E., Miranda, D. A., Gonzalez-Correa, C. H., & Gómez-Buitrago, P. A. (2017). The colon revisited or the key to wellness, health and disease. Medical Hypotheses, 108, 133–143.

    Article  Google Scholar 

  • Goodwin, J., Yachi, K., Nagane, M., Yasui, H., Miyake, Y., Inanami, O., et al. (2014). In vivo tumour extracellular pH monitoring using electron paramagnetic resonance: The effect of X-ray irradiation. NMR in Biomedicine, 27(4), 453–458.

    Article  Google Scholar 

  • Grimmes, S., & Martinsen, G. (2000). Bioimpedance & bioelectricity basics. (Chapter 1, Introduction, p. 1, and chap. 7 “Data and models”, p. 214). London, UK: Academic Press.

    Google Scholar 

  • Grimmes, S., & Martinsen, G. (2005). Cole electrical impedance model—A critique and an alternative. IEEE Transactions on Biomedical Engineering, 52(1), 132–135.

    Article  Google Scholar 

  • Gupta, D., Lammersfeld, C. A., Vashi, P. G., King, J., Dahlk, S. L., Grutsch, J. F., et al. (2009). Bioelectrical impedance phase angle in clinical practice: Implications for prognosis in stage IIIB and IV non-small cell lung cancer. BMC Cancer, 9, 37.

    Article  Google Scholar 

  • Halter, R. J., Schned, A., Heaney, J., Hartov, A., & Paulsen, K. D. (2009a). Electrical properties of prostatic tissues: I. Single frequency admittivity properties. The Journal of Urology, 182(4), 1600–1607.

    Article  Google Scholar 

  • Halter, R. J., Schned, A., Heaney, J., Hartov, A., & Paulsen, K. D. (2009b). Electrical properties of prostatic tissues: II. Spectral admittivity properties. The Journal of Urology, 182(4), 1608–1613.

    Article  Google Scholar 

  • Harel, F., Dupuis, J., Benelfassi, A., Ruel, N., & Grégoire, J. (2005). Radionuclide plethysmography for noninvasive evaluation of peripheral arterial blood flow. American Journal of Physiology. Heart and Circulatory Physiology, 289(1), H258–H262.

    Article  Google Scholar 

  • Holder, D. S. (2005). Electrical impedance tomography: Methods, history and applications. Bristol, UK: Institute of Physics Publishing (IOP).

    Google Scholar 

  • Itsekson, A., Shepshelovich, D., Kanevsky, A., & Seidman, D. S. (2010). Measurement of electrical resistance of dermal-visceral zones as a diagnostic tool for gynecologic disorders. The Israel Medical Association Journal, 12(6), 334–337.

    Google Scholar 

  • Johansson, M. E., Gustafsson, J. K., Holmén-Larsson, J., Jabbar, K. S., Xia, L., Xu, H., et al. (2013). Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut, 63(2), 281–291.

    Article  Google Scholar 

  • Jones, D. A. (1991). Electrical engineering: The backbone of society. Proceedings of the IEE: Science, Measurement and Technology, 138(1), 1–10.

    Article  Google Scholar 

  • Kåhrström, C. T., Pariente, N., & Weiss, U. (2016). Intestinal microbiota in health and disease. Nature, 535(7610), 47.

    Article  Google Scholar 

  • Kassebaum, N. J., Bernabé, E., Dahiya, M., Bhandari, B., Murray, C. J., & Marcenes, W. (2015). Global burden of untreated caries: A systematic review and metaregression. Journal of Dental Research, 94(5), 650–658.

    Article  Google Scholar 

  • Keshtkar, A., Keshtkar, A., & Smallwood, R. H. (2006). Electrical impedance spectroscopy and the diagnosis of bladder pathology. Physiological Measurement, 27(7), 585–596.

    Article  Google Scholar 

  • Khan, S., Mahara, A., Hyams, E. S., Schned, A. R., & Halter, R. J. (2016). Prostate cancer detection using composite impedance metric. IEEE Transactions on Medical Imaging, 35(12), 2513–2523.

    Article  Google Scholar 

  • Lawenko, R. M., & Lee, Y. Y. (2016). Emerging roles of the Endolumenal Functional Lumen Imaging Probe (EndoFLIP) in gastrointestinal motility disorders. Journal of Neurogastroenterology and Motility, 23. [Epub ahead of print].

    Google Scholar 

  • León-Pedroza, J. I., González-Tapia, L. A., del Olmo-Gil, E., Castellanos-Rodríguez, D., Escobedo, G., & González-Chávez, A. (2015). Low-grade systemic inflammation and the development of metabolic diseases: From the molecular evidence to the clinical practice. Cirugia y Cirujanos, 83(6), 543–551.

    Article  Google Scholar 

  • Leontev, A. S., Korotkevich, A. G., Repnikova, R. V., Merzlyakov, M. V., & Shestak, I. S. (2015). Endoscopic diagnosis and parietal impedancometry in the assessment of changes in the mucosa of the duodenum in patients with suspicion on postcholecystectomy syndrome. Eksp Klin Gastroenterol, (4), 34–37.

    Google Scholar 

  • Lerner, A., & Matthias, T. (2015). Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmunity Reviews, 14(6), 479–489.

    Article  Google Scholar 

  • Li, Z. Y., Ren, C. S., Zhao, S., Sha, H., & Deng, J. (2011). Gastric motility functional study based on electrical bioimpedance measurements and simultaneous electrogastrography. Journal of Zhejiang University. Science. B, 12(12), 983–989.

    Article  Google Scholar 

  • Liao, Y. M., Feng, Z. D., & Chen, Z. L. (2007). In situ tracing the process of human enamel demineralization by electrochemical impedance spectroscopy (EIS). Journal of Dentistry, 35(5), 425–430.

    Article  Google Scholar 

  • Lochhead, P., Chan, A. T., Nishihara, R., Fuchs, C. S., Beck, A. H., Giovannucci, E., et al. (2015). Etiologic field effect: Reappraisal of the field effect concept in cancer predisposition and progression. Modern Pathology, 28(1), 14–29.

    Article  Google Scholar 

  • Malich, A., Boehm, T., Facius, M., Freesmeyer, M. G., Fleck, M., Anderson, R., et al. (2001). Differentiation of mammographically suspicious lesions: Evaluation of breast ultrasound, MRI mammography and electrical impedance scanning as adjunctive technologies in breast cancer detection. Clinical Radiology, 56(4), 278–283.

    Article  Google Scholar 

  • Man, A. L., Bertelli, E., Rentini, S., Regoli, M., Briars, G., Marini, M., et al. (2015). Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clinical Science (London, England), 129(7), 515–527.

    Article  Google Scholar 

  • Mašanauskienė, E., Sadauskas, S., Naudžiūnas, A., Unikauskas, A., & Stankevičius, E. (2014). Impedance plethysmography as an alternative method for the diagnosis of peripheral arterial disease. Medicina Lithuania, 50(6), 334–339.

    Google Scholar 

  • McIlduff, C., Yim, S., Pacheck, A., Geisbush, T., Mijailovic, A., & Rutkove, S. B. (2016a). An improved electrical impedance myography (EIM) tongue array for use in clinical trials. Clinical Neurophysiology, 127(1), 932–935.

    Article  Google Scholar 

  • McIlduff, C. E., Yim, S. J., Pacheck, A. K., & Rutkove, S. B. (2016b). Optimizing electrical impedance myography of the tongue in ALS. Muscle & Nerve. https://doi.org/10.1002/mus.25375. [Epub ahead of print].

  • Mesnil, M., Crespin, S., Avanzo, J. L., & Zaidan-Dagli, M. L. (2005). Defective gap junctional intercellular communication in the carcinogenic process. Biochimica et Biophysica Acta, 1719(1-2), 125–145.

    Article  Google Scholar 

  • Miller, J. C., & Horvath, S. M. (1978). Impedance cardiography. Psychophysiology, 15(1), 80–91.

    Article  Google Scholar 

  • Minihane, A. M., Vinoy, S., Russell, W. R., Baka, A., Roche, H. M., Tuohy, K. M., et al. (2015). Low-grade inflammation, diet composition and health: Current research evidence and its translation. The British Journal of Nutrition, 114(7), 999–1012.

    Article  Google Scholar 

  • Morucci, J. P., & Marsili, P. M. (1996). Bioelectrical impedance techniques in medicine. Part III: Impedance imaging. Second section: Reconstruction algorithms. Critical Reviews in Biomedical Engineering, 24(4-6), 599–654.

    Google Scholar 

  • Morucci, J. P., & Rigaud, B. (1996). Bioelectrical impedance techniques in medicine. Part III: Impedance imaging. Third section: Medical applications. Critical Reviews in Biomedical Engineering, 24(4-6), 655–677.

    Google Scholar 

  • Mousa, H. M., Rosen, R., Woodley, F. W., Orsi, M., Armas, D., Faure, C., et al. (2011). Esophageal impedance monitoring for gastroesophageal reflux. Journal of Pediatric Gastroenterology and Nutrition, 52(2), 129–139.

    Article  Google Scholar 

  • Mulett-Vásquez, E., Correa-Florez, A., Dussán-Lubert, C., Miranda-Mercado, D. A., & González-Correa, C. A. (2016a). In vitro luminal measurements of colon electrical impedance in rabbits. IFMBE Proceedings, 54, 28–31.

    Article  Google Scholar 

  • Mulett-Vásquez, E., Gonzalez-Correa, C. A., Miranda-Mercado, D. A., Osorio-Chica, M., & Dussan-Lubert, C. (2016b). In vivo Electrical-Impedance Spectroscopy (EIS) readings in the human rectum. IFMBE Proceedings, 54, 68–71.

    Article  Google Scholar 

  • Murakami, H., Matsumoto, H., Ueno, D., Kawai, A., Ensako, T., Kaida, Y., et al. (2013). Current status of multichannel electrogastrography and examples of its use. Journal of Smooth Muscle Research, 49, 78–88.

    Article  Google Scholar 

  • Nekoofar, M. H., Ghandi, M. M., Hayes, S. J., & Dummer, P. M. (2006). The fundamental operating principles of electronic root canal length measurement devices. International Endodontic Journal, 39(8), 595–609.

    Article  Google Scholar 

  • Nelsen, E. M., Hawes, R. H., & Iyer, P. G. (2012). Diagnosis and management of Barrett’s esophagus. The Surgical Clinics of North America, 92(5), 1135–1154.

    Article  Google Scholar 

  • Nguyen, N. Q., Bryant, L. K., Burgstad, C. M., Fraser, R. J., Sifrim, D., & Holloway, R. H. (2010). Impact of bolus volume on small intestinal intra-luminal impedance in healthy subjects. World Journal of Gastroenterology, 16(17), 2151–2157.

    Article  Google Scholar 

  • Nicander, I., & Ollmar, S. (1999). Electrical bioimpedance related to structural differences and reactions in skin and oral mucosa. Annals of the New York Academy of Sciences, 873, 221–226.

    Article  Google Scholar 

  • Nicander, I., & Ollmar, S. (2004). Clinically normal atopic skin vs. non-atopic skin as seen through electrical impedance. Skin Research and Technology, 10(3), 178–183.

    Article  Google Scholar 

  • Nicander, I., Rantanen, I., Rozell, B. L., Söderling, E., & Ollmar, S. (2003). The ability of betaine to reduce the irritating effects of detergents assessed visually, histologically and by bioengineering methods. Skin Research and Technology, 9(1), 50–58.

    Article  Google Scholar 

  • Noll, L., Rommel, N., Davidson, G. P., & Omari, T. I. (2011). Pharyngeal flow interval: A novel impedance-based parameter correlating with aspiration. Neurogastroenterology and Motility, 23(6), 551–556.

    Article  Google Scholar 

  • O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7(7), 688–693.

    Article  Google Scholar 

  • Ollmar, S., Eek, A., Sundström, F., & Emtestam, L. (1995). Electrical impedance for estimation of irritation in oral mucosa and skin. Medical Progress through Technology, 21(1), 29–37.

    Google Scholar 

  • Pabst, O., Tronstad, C., Grimnes, S., Fowles, D., Martinsen, Ø. G. (2016). Comparison between the AC and DC measurement of electrodermal activity. Psychophysiology. [Epub ahead of print].

    Google Scholar 

  • Pacheck, A., Mijailovic, A., Yim, S., Li, J., Green, J. R., McIlduff, C. E., et al. (2016). Tongue electrical impedance in amyotrophic lateral sclerosis modeled using the finite element method. Clinical Neurophysiology, 127(3), 1886–1890.

    Article  Google Scholar 

  • Piccoli, A. (2014). Estimation of fluid volumes in hemodialysis patients: Comparing bioimpedance with isotopic and dilution methods. Kidney International, 85(4), 738–741.

    Article  Google Scholar 

  • Piccoli, A., Codognotto, M., Cianci, V., Vettore, G., Zaninotto, M., Plebani, M., et al. (2012). Differentiation of cardiac and noncardiac dyspnea using bioelectrical impedance vector analysis (BIVA). Cardiac Failure, 18(3), 226–232.

    Article  Google Scholar 

  • Pretty, I. A., & Ellwood, R. P. (2013). The caries continuum: Opportunities to detect, treat and monitor the re-mineralization of early caries lesions. Journal of Dentistry, 41(Suppl 2), S12–S21.

    Article  Google Scholar 

  • Rantanen, I., Jutila, K., Nicander, I., Tenovuo, J., & Söderling, E. (2003). The effects of two sodium lauryl sulphate-containing toothpastes with and without betaine on human oral mucosa in vivo. Swedish Dental Journal, 27(1), 31–34.

    Google Scholar 

  • Rao, S. S., Hayek, B., & Summers, R. W. (1995). Impedance planimetry: An integrated approach for assessing sensory, active, and passive biomechanical properties of the human esophagus. The American Journal of Gastroenterology, 90(3), 431–438.

    Google Scholar 

  • Rehm, W. S. (1953). Electrical resistance of resting and secreting stomach. The American Journal of Physiology, 172(3), 689–699.

    Google Scholar 

  • Rehm, W. S., Dennis, W. H., & Schlesinger, H. (1955). Electrical resistance of the mammalian stomach. The American Journal of Physiology, 181(2), 451–470.

    Google Scholar 

  • Rezác, P. (2008). Potential applications of electrical impedance techniques in female mammalian reproduction. Theriogenology, 70(1), 1–14.

    Article  Google Scholar 

  • Rigaud, B., & Morucci, J. P. (1996). Bioelectrical impedance techniques in medicine. Part III: Impedance imaging. First section: General concepts and hardware. Critical Reviews in Biomedical Engineering, 24(4-6), 467–597.

    Google Scholar 

  • Rigaud, B., Morucci, J. P., & Chauveau, N. (1996). Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. Second section: Impedance spectrometry. Critical Reviews in Biomedical Engineering, 24(4–6), 257–351.

    Google Scholar 

  • Rim, J. H., Jo, S. J., Park, J. Y., Park, B. D., & Youn, J. I. (2005). Electrical measurement of moisturizing effect on skin hydration and barrier function in psoriasis patients. Clinical and Experimental Dermatology, 30(4), 409–413.

    Article  Google Scholar 

  • Rodriguez, S., Ollmar, S., Waqar, M., & Rusu, A. (2016). A batteryless sensor ASIC for implantable bio-impedance applications. IEEE Transactions on Biomedical Circuits and Systems, 10(3), 533–544.

    Article  Google Scholar 

  • Rodríguez-Piñeiro, A. M., & Johansson, M. E. (2015). The colonic mucus protection depends on the microbiota. Gut Microbes, 6(5), 326–330.

    Article  Google Scholar 

  • Rutkove, S. B. (2009). Electrical impedance myography: Background, current state, and future directions. Muscle & Nerve, 40(6), 936–946.

    Article  Google Scholar 

  • Rutkove, S. B., Esper, G. J., Lee, K. S., Aaron, R., & Shiffman, C. A. (2005). Electrical impedance myography in the detection of radiculopathy. Muscle & Nerve, 32(3), 335–341.

    Article  Google Scholar 

  • Sanchez, B., & Rutkove, S. B. (2016). Electrical impedance myography and its applications in neuromuscular disorders. Neurotherapeutics. [Epub ahead of print].

    Google Scholar 

  • Sellers, R. S., & Morton, D. (2014). The colon: From banal to brilliant. Toxicologic Pathology, 42(1), 67–81.

    Article  Google Scholar 

  • Shiffman, C. A. (2013). Circuit modeling of the electrical impedance: Part III. Disuse following bone fracture. Physiological Measurement, 34(5), 487–502.

    Article  Google Scholar 

  • Shiffman, C. A., & Rutkove, S. B. (2013). Circuit modeling of the electrical impedance: I. Neuromuscular disease. Physiological Measurement, 34(2), 203–221.

    Article  Google Scholar 

  • Shima, R., Jiang, Z., Fen, S. Y., Monnavar, A. A., & Ali, K. (2012). Development and evaluation of a novel four-electrode device system for monitoring skin impedance. African Journal of Traditional, Complementary, and Alternative Medicines, 9(4), 599–606.

    Article  Google Scholar 

  • Siedlecka, J., Siedlecki, P., & Bortkiewicz, A. (2015). Impedance cardiography - Old method, new opportunities. Part I. Clinical applications. International Journal of Occupational Medicine and Environmental Health, 28(1), 27–33.

    Google Scholar 

  • Sifrim, D., Silny, J., Holloway, R. H., & Janssens, J. J. (1999). Patterns of gas and liquid reflux during transient lower oesophageal sphincter relaxation: A study using intraluminal electrical impedance. Gut, 44(1), 47–54.

    Article  Google Scholar 

  • Slaughter, D. P., Southwick, H. W., & Smejkal, W. (1953). Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer, 6(5), 963–968.

    Article  Google Scholar 

  • Sleator, R. D. (2010). The human superorganism - of microbes and men. Medical Hypotheses, 74(2), 214–215.

    Article  Google Scholar 

  • Smallwood, R. H., Mangnall, Y. F., & Leathard, A. D. (1994). Transport of gastric contents. Physiological Measurement, 15(Suppl 2a), A175–A188.

    Article  Google Scholar 

  • Soler, A. P., Miller, R. D., Kathleen, V., Laughlin, K. V., Carp, N. Z., Klurfeld, D. M., et al. (1999). Increased tight junctional permeability is associated with the development of colon cáncer. Carcinogenesis, 20(8), 1425–1431.

    Article  Google Scholar 

  • Solmaz, H., Dervisoglu, S., Gulsoy, M., & Ulgen, Y. (2016). Laser biostimulation of wound healing: Bioimpedance measurements support histology. Lasers in Medical Science, 31(8), 1547–1554.

    Article  Google Scholar 

  • Somma, F., Castagnola, R., Lajolo, C., Paternò Holtzman, L., & Marigo, L. (2012). In vivo accuracy of three electronic root canal length measurement devices: Dentaport ZX, Raypex 5 and ProPex II. International Endodontic Journal, 45(6), 552–556.

    Article  Google Scholar 

  • Spence, D. W., & Pomeranz, B. (1996). Surgical wound healing monitored repeatedly in vivo using electrical resistance of the epidermis. Physiological Measurement, 17(2), 57–69.

    Article  Google Scholar 

  • Strand-Amundsen, R. J., Tronstad, C., Kalvøy, H., Gundersen, Y., Krohn, C. D., Aasen, A. O., et al. (2016). In vivo characterization of ischemic small intestine using bioimpedance measurements. Physiological Measurement, 37(2), 257–275.

    Article  Google Scholar 

  • Sun, T. P., Ching, C. T., Cheng, C. S., Huang, S. H., Chen, Y. J., Hsiao, C. S., et al. (2010). The use of bioimpedance in the detection/screening of tongue cancer. Cancer Epidemiology, 34(2), 207–211.

    Article  Google Scholar 

  • Szczesniak, M. M., Rommel, N., Dinning, P. G., Fuentealba, S. E., Cook, I. J., & Omari, T. I. (2009). Intraluminal impedance detects failure of pharyngeal bolus clearance during swallowing: A validation study in adults with dysphagia. Neurogastroenterology and Motility, 21(3), 244–252.

    Article  Google Scholar 

  • Tagami, H. (2014). Electrical measurement of the hydration state of the skin surface in vivo. The British Journal of Dermatology, 171(Suppl 3), 29–33.

    Article  Google Scholar 

  • Tambucci, R., Thapar, N., Saliakellis, E., Pescarin, M., Quitadamo, P., Cristofori, F., et al. (2015). Clinical relevance of esophageal baseline impedance measurement: Just an innocent bystander. Journal of Pediatric Gastroenterology and Nutrition, 60(6), 776–782.

    Article  Google Scholar 

  • Theodor, M., Ruh, D., Ocker, M., Spether, D., Förster, K., Heilmann, C., et al. (2014). Implantable impedance plethysmography. Sensors (Basel), 14(8), 14858–14872.

    Article  Google Scholar 

  • Tidy, J. A., Brown, B. H., Healey, T. J., Daayana, S., Martin, M., Prendiville, W., et al. (2013). Accuracy of detection of high-grade cervical intraepithelial neoplasia using electrical impedance spectroscopy with colposcopy. British Journal of Obstetrics and Gynaecology, 120, 400–411.

    Article  Google Scholar 

  • Tornuev, Y. V., Koldysheva, E. V., Lapiy, G. A., Molodykh, O. P., Balakhnin, S. M., Bushmanova, G. M., et al. (2014). Bioimpedancemetry in the diagnostics of inflammatory process in the mammary gland. Bulletin of Experimental Biology and Medicine, 156(3), 381–383.

    Article  Google Scholar 

  • Tseng, Y. J., Hu, W. L., Hung, I. L., Hsieh, C. J., & Hung, Y. C. (2014). Electrodermal screening of biologically active points for upper gastrointestinal bleeding. The American Journal of Chinese Medicine, 42(5), 1111–1121.

    Article  Google Scholar 

  • Tutuian, R., & Castell, D. O. (2006). Review article: Oesophageal spasm - diagnosis and management. Alimentary Pharmacology & Therapeutics, 23(10), 1393–1402.

    Article  Google Scholar 

  • Valentinuzzi, M. E. (1996). Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. First section: General concepts. Critical Reviews in Biomedical Engineering, 24(4-6), 223–255.

    Google Scholar 

  • Valentinuzzi, M. E., Morucci, J. P., & Felice, C. J. (1996). Bioelectrical impedance techniques in medicine. Part II: Monitoring of physiological events by impedance. Critical Reviews in Biomedical Engineering, 24(4-6), 353–466.

    Google Scholar 

  • Vanheel, H., Vicario, M., Vanuytsel, T., Van Oudenhove, L., Martinez, C., Keita, Å. V., et al. (2014). Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut, 63(2), 262–271.

    Article  Google Scholar 

  • Viggiano, D., Ianiro, G., Vanella, G., Bibbò, S., Bruno, G., Simeone, G., et al. (2015). Gut barrier in health and disease: Focus on childhood. European Review for Medical and Pharmacological Sciences, 19(6), 1077–1085.

    Google Scholar 

  • Walker, D. C., Brown, B. H., Blackett, A. D., Tidy, J., & Smallwood, R. H. (2003). A study of the morphological parameters of cervical squamous epithelium. Physiological Measurement, 24(1), 121–135.

    Article  Google Scholar 

  • Weber, S. A., Watermann, N., Jossinet, J., Byrne, J. A., Chantrey, J., Alam, S., et al. (2010). Remote wound monitoring of chronic ulcers. IEEE Transactions on Information Technology in Biomedicine, 14(2), 371–377.

    Article  Google Scholar 

  • Weitzen, R., Epstein, N., Shoenfeld, Y., & Zimlichman, E. (2007). Diagnosing diseases by measurement of electrical skin impedance: A novel technique. Annals of the New York Academy of Sciences, 1109, 185–192.

    Article  Google Scholar 

  • Weyer, S., Zink, M. D., Wartzek, T., Leicht, L., Mischke, K., Vollmer, T., et al. (2014). Bioelectrical impedance spectroscopy as a fluid management system in heart failure. Physiological Measurement, 35(6), 917–930.

    Article  Google Scholar 

  • Yamamoto, T. (1963). On the thickness of the unit membrane. The Journal of Cell Biology, 17(2), 413–421.

    Article  Google Scholar 

  • Yamasaki, H. (1991). Aberrant expression and function of gap junctions during carcinogenesis. Environmental Health Perspectives, 93, 191–197.

    Article  Google Scholar 

  • Yoshida, T., Kim, W. C., Kawamoto, K., Hirashima, T., Oka, Y., & Kubo, T. (2009). Measurement of bone electrical impedance in fracture healing. Journal of Orthopaedic Science, 14(3), 320–329.

    Article  Google Scholar 

  • Zariffa, J., Grouza, V., Popovic, M. R., & Hassouna, M. M. (2016). A phase-based electrical plethysmography approach to bladder volume measurement. Annals of Biomedical Engineering, 44(4), 1299–1309.

    Article  Google Scholar 

  • Zimlichman, E., Lahad, A., Aron-Maor, A., Kanevsky, A., & Shoenfeld, Y. (2005). Measurement of electrical skin impedance of dermal-visceral zones as a diagnostic tool for inner organ pathologies: A blinded preliminary evaluation of a new technique. The Israel Medical Association Journal, 7(10), 631–634.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos-Augusto González-Correa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Correa, CA. (2018). Clinical Applications of Electrical Impedance Spectroscopy. In: Simini, F., Bertemes-Filho, P. (eds) Bioimpedance in Biomedical Applications and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-74388-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74388-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74387-5

  • Online ISBN: 978-3-319-74388-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics