Skip to main content

TCAD Validation of the Model

  • Chapter
  • First Online:
  • 800 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

The EPFL substrate lumped device models have been coded in VerilogA and validated by comparison with TCAD simulations. The choice of VerilogA implementation allows to simulate the model in standard circuit simulators as the Cadence Spectre used in this chapter. The Synopsys Sentaurus Device simulator will be used as TCAD software for comparison. Since the EPFL modeling methodology is junction based, the characteristics of diodes from low- to high-current regimes are investigated first before addressing the typical configuration of parasitic BJT in an HV ICs. Results are shown for both the lateral parasitic NPN BJT between two wells and the vertical parasitic PNP BJT where DC, AC, transient, and temperature simulations are reported. Finally, breakdown simulations of basic ESD devices are discussed to demonstrate the capability of the model to simulate unstable snapback behaviors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Bertrand, C. Delage, M. Bafleur, N. Nolhier, J.-M. Dorkel, Q. Nguyen, N. Mauran, D. Tremouilles, P. Perdu, Analysis and compact modeling of a vertical grounded-base n-p-n bipolar transistor used as ESD protection in a smart power technology. IEEE J. Solid-State Circuits 36(9), 1373–1381 (2001)

    Article  Google Scholar 

  2. M.-D. Ker, K.-C. Hsu, Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits. IEEE Trans. Device Mater. Reliab. 5(2), 235–249 (2005)

    Article  Google Scholar 

  3. M.-D. Ker, W.-L. Wu, ESD protection design with the low-leakage-current diode string for RF circuits in BiCMOS SiGe process, in Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD) (2005), pp. 1–7

    Google Scholar 

  4. I. Ladany, An analysis of inertial inductance in a junction diode. IRE Trans. Electron Devices 7(4), 303–310 (1960)

    Article  Google Scholar 

  5. S.E. Laux, K. Hess, Revisiting the analytic theory of p-n junction impedance: improvements guided by computer simulation leading to a new equivalent circuit. IEEE Trans. Electron Devices 46(2), 396–412 (1999)

    Article  Google Scholar 

  6. T.J. Maloney, S. Dabral, Novel clamp circuits for IC power supply protection, in Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD) (1995), pp. 1–12

    Google Scholar 

  7. J.A. Salcedo, J.J. Liou, Z. Liu, J.E. Vinson, TCAD methodology for design of SCR devices for Electrostatic Discharge (ESD) applications. IEEE Trans. Electron Devices 54(4), 822–832 (2007)

    Article  Google Scholar 

  8. M. Schenkel, Substrate current effects in smart power ICs, PhD thesis, ETH Zürich, Nr. 14925, 2003

    Google Scholar 

  9. E. Seebacher, W. Posch, K. Molnar, Z. Huszka, Analog compact modeling for a 20–120 V HV CMOS Technology, in Proceedings of NSTI Nanotechology Conference Trade Show, vol. 3, pp. 720–723 (Nano Science and Technology Institute, Amritsar, 2006)

    Google Scholar 

  10. Y. Subramanian, R.B. Darling, Compact modeling of Avalanche breakdown in pn-junctions for computer-aided ESD design (CAD for ESD), in Technical Proceedings of the International Conference on Modeling and Simulation of Microsystems (2001), pp. 205–208

    Google Scholar 

  11. J.J.H. van den Biesen, Modelling the inductive behaviour of short-base p-n junction diodes at high forward bias. Solid State Electron. 33(11), 1471–1476 (1990)

    Article  Google Scholar 

  12. V.A. Vashchenko, A. Shibkov, ESD Design for Analog Circuits (Springer, New York, 2010)

    Book  Google Scholar 

  13. J.-S. Yuan, J.J. Liou, W.R. Eisenstadt, A physics-based current-dependent base resistance mode for advanced bipolar transistors. IEEE Trans. Electron Devices 35(7), 1055–1062 (1988)

    Article  Google Scholar 

  14. J. Yuxi, L. Jiao, R. Feng, C. Jialin, Y. Dianxiong, Influence of layout parameters on snapback characteristic for a gate-grounded NMOS device in 0.13-μm silicide CMOS technology. J. Semicond. 30(8), 084007 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buccella, P., Stefanucci, C., Kayal, M., Sallese, JM. (2018). TCAD Validation of the Model. In: Parasitic Substrate Coupling in High Voltage Integrated Circuits. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-74382-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74382-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74381-3

  • Online ISBN: 978-3-319-74382-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics