What About the Clinic?

  • Andreas Bikfalvi
Chapter

Abstract

The list of pathologies in which an excess of angiogenesis is observed is relatively long (see Table 12.1). However, the importance of angiogenesis in the pathophysiology of these diseases varies. It certainly plays a preponderant role in cancer and neovascular eye diseases. However, even in cancer, the importance of angiogenesis seems to vary from one cancer to another and from one stage of the disease to another.

References

  1. 251.
    Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974. https://doi.org/10.1038/nature04483CrossRefPubMedGoogle Scholar
  2. 139.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342. https://doi.org/10.1056/NEJMoa032691CrossRefPubMedGoogle Scholar
  3. 252.
    Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8(4):210–221. https://doi.org/10.1038/nrclinonc.2011.21CrossRefPubMedPubMedCentralGoogle Scholar
  4. 253.
    Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427. https://doi.org/10.1038/nrd3455CrossRefPubMedGoogle Scholar
  5. 255.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62. https://doi.org/10.1126/science.1104819CrossRefPubMedGoogle Scholar
  6. 254.
    Shaked Y, Henke E, Roodhart JM, Mancuso P, Langenberg MH, Colleoni M, Daenen LG, Man S, Xu P, Emmenegger U, Tang T, Zhu Z, Witte L, Strieter RM, Bertolini F, Voest EE, Benezra R, Kerbel RS (2008) Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 14(3):263–273. https://doi.org/10.1016/j.ccr.2008.08.001CrossRefPubMedPubMedCentralGoogle Scholar
  7. 228.
    Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD, Phillips JJ, Cheresh DA, Park M, Bergers G (2012) VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22(1):21–35. https://doi.org/10.1016/j.ccr.2012.05.037CrossRefPubMedPubMedCentralGoogle Scholar
  8. 64.
    Greene HS (1938) Heterologous transplantation of human and other mammalian tumors. Science 88(2285):357–358. https://doi.org/10.1126/science.88.2285.357CrossRefPubMedGoogle Scholar
  9. 239.
    Javerzat SGV, Bikfalvi A (2013) Balancing risks and benefits of anti-angiogenic drugs for malignant glioma. Future Neurol 8(2):159–174CrossRefGoogle Scholar
  10. 256.
    Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh CB, Bjerkvig R, Niclou SP (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A 108(9):3749–3754. https://doi.org/10.1073/pnas.1014480108CrossRefPubMedPubMedCentralGoogle Scholar
  11. 257.
    Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, Mittelbronn M, Bahr O, Weyerbrock A, Stuhr L, Miletic H, Sakariassen PO, Stieber D, Rygh CB, Lund-Johansen M, Zheng L, Gottlieb E, Niclou SP, Bjerkvig R (2015) Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol 129(1):115–131. https://doi.org/10.1007/s00401-014-1352-5CrossRefPubMedGoogle Scholar
  12. 258.
    LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Domingos Chinen LT, Rocha RM, Asara JM, Kalluri R (2014) PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16(10):992–1003, 1001–1015. https://doi.org/10.1038/ncb3039CrossRefPubMedPubMedCentralGoogle Scholar
  13. 172.
    Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475. https://doi.org/10.1016/j.cell.2007.08.038CrossRefPubMedGoogle Scholar
  14. 173.
    Dewerchin M, Carmeliet P (2014) Placental growth factor in cancer. Expert Opin Ther Targets 18(11):1339–1354. https://doi.org/10.1517/14728222.2014.948420CrossRefPubMedGoogle Scholar
  15. 174.
    Eriksson A, Cao R, Pawliuk R, Berg SM, Tsang M, Zhou D, Fleet C, Tritsaris K, Dissing S, Leboulch P, Cao Y (2002) Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell 1(1):99–108CrossRefGoogle Scholar
  16. 175.
    Yang X, Zhang Y, Yang Y, Lim S, Cao Z, Rak J, Cao Y (2013) Vascular endothelial growth factor-dependent spatiotemporal dual roles of placental growth factor in modulation of angiogenesis and tumor growth. Proc Natl Acad Sci U S A 110(34):13932–13937. https://doi.org/10.1073/pnas.1309629110CrossRefPubMedPubMedCentralGoogle Scholar
  17. 259.
    Ferrara N (2010) Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat Med 16(10):1107–1111. https://doi.org/10.1038/nm1010-1107CrossRefPubMedGoogle Scholar
  18. 260.
    Jiang S, Park C, Barner JC (2014) Ranibizumab for age-related macular degeneration: a meta-analysis of dose effects and comparison with no anti-VEGF treatment and bevacizumab. J Clin Pharm Ther 39(3):234–239. https://doi.org/10.1111/jcpt.12146CrossRefPubMedGoogle Scholar
  19. 261.
    Yang J, Wang X, Fuh G, Yu L, Wakshull E, Khosraviani M, Day ES, Demeule B, Liu J, Shire SJ, Ferrara N, Yadav S (2014) Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A. Mol Pharm 11(10):3421–3430. https://doi.org/10.1021/mp500160vCrossRefPubMedGoogle Scholar
  20. 72.
    Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE (1997) Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275(5299):547–550CrossRefGoogle Scholar
  21. 262.
    Teesalu T, Sugahara KN, Ruoslahti E (2012) Mapping of vascular ZIP codes by phage display. Methods Enzymol 503:35–56. https://doi.org/10.1016/B978-0-12-396962-0.00002-1CrossRefPubMedGoogle Scholar
  22. 263.
    Staquicini FI, Moeller BJ, Arap W, Pasqualini R (2010) Combinatorial vascular targeting in translational medicine. Proteomics Clin Appl 4(6-7):626–632. https://doi.org/10.1002/prca.200900213CrossRefPubMedGoogle Scholar
  23. 264.
    Elia G, Fugmann T, Neri D (2014) From target discovery to clinical trials with armed antibody products. J Proteome 107:50–55. https://doi.org/10.1016/j.jprot.2014.02.034CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Andreas Bikfalvi
    • 1
  1. 1.Angiogenesis and Tumor Microenvironment LaboratoryUniversity of Bordeaux and National Institute of Health and Medical ResearchPessacFrance

Personalised recommendations