Arbitrary Reference in Mathematical Reasoning

  • Enrico MartinoEmail author
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 42)


It is claimed that the ideal possibility of picking up any object of the universe of discourse is essential not only in intuitionistic but also in classical logic and mathematics.



I am grateful to my colleagues Pierdaniele Giaretta and Ernesto Napoli for a number of helpful comments. My best thanks to Aldo Antonelli for inviting me to write the paper.


  1. Bernays, P. (1964). On platonism in mathematics. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics (pp. 274–286). Cambridge: Cambridge University Press.Google Scholar
  2. Black, M. (1971). The elusiveness of sets. Review of Metaphysics, 24, 614–636.Google Scholar
  3. Boolos, G. (1985). Nominalist platonism. Philosophical Review, 94, 327–344.CrossRefGoogle Scholar
  4. Bools, G. (1984). To be is to be a value of a variable. Journal of Philosophy, 81, 430–449.Google Scholar
  5. Frege, G. (1891). Function and concept. In P. Geach & M. Black (Eds.), Tranlsations from the philosophical writings of Gottlob Frege (pp. 137–156). Oxford: Blackwell.Google Scholar
  6. Frege, G. (1893). Grundgesetze der Arithmetik (Vol. I). Jena: Pohle.Google Scholar
  7. Frege, G. (1904). What is a function? In B. MacGuinness (Ed.), Collected papers in mathematics logic and philosophy (pp. 285–292). Oxford: Blackwell.Google Scholar
  8. Gödel, K. (1984). Russell’s mathematical logic. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics (pp. 211–232). Cambridge: Cambridge University Press.Google Scholar
  9. Hintikka, J. (1997). The principles of mathematics revisited. Cambridge: Cambridge University Press.Google Scholar
  10. Parsons, C. (1990). The structuralist view of mathematical objects. Synthese, 84, 303–346.CrossRefGoogle Scholar
  11. Ramsey, F. (1925). The foundations of mathematics. Proceedings of the London Mathematical Society, 25, 338–394.Google Scholar
  12. Resnik, M. D. (1988). Second order logic still wild. Journal of Philosophy, 75, 75–87.CrossRefGoogle Scholar
  13. Russell, B. (1908). Mathematical logic as based on the theory of types. In J. van Heijenoort (Ed.), From Frege to Gödel (pp. 150–182). Cambridge, MA: Harvard University Press.Google Scholar
  14. Shapiro, S. (1997). Philosophy of mathematics. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.FISPPA DepartmentUniversity of PaduaPaduaItaly

Personalised recommendations