Skip to main content

Arbitrary Reference in Mathematical Reasoning

  • Chapter
  • First Online:
Intuitionistic Proof Versus Classical Truth

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 42))

  • 313 Accesses

Abstract

It is claimed that the ideal possibility of picking up any object of the universe of discourse is essential not only in intuitionistic but also in classical logic and mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernays, P. (1964). On platonism in mathematics. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics (pp. 274–286). Cambridge: Cambridge University Press.

    Google Scholar 

  • Black, M. (1971). The elusiveness of sets. Review of Metaphysics, 24, 614–636.

    Google Scholar 

  • Boolos, G. (1985). Nominalist platonism. Philosophical Review, 94, 327–344.

    Article  Google Scholar 

  • Bools, G. (1984). To be is to be a value of a variable. Journal of Philosophy, 81, 430–449.

    Google Scholar 

  • Frege, G. (1891). Function and concept. In P. Geach & M. Black (Eds.), Tranlsations from the philosophical writings of Gottlob Frege (pp. 137–156). Oxford: Blackwell.

    Google Scholar 

  • Frege, G. (1893). Grundgesetze der Arithmetik (Vol. I). Jena: Pohle.

    Google Scholar 

  • Frege, G. (1904). What is a function? In B. MacGuinness (Ed.), Collected papers in mathematics logic and philosophy (pp. 285–292). Oxford: Blackwell.

    Google Scholar 

  • Gödel, K. (1984). Russell’s mathematical logic. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics (pp. 211–232). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hintikka, J. (1997). The principles of mathematics revisited. Cambridge: Cambridge University Press.

    Google Scholar 

  • Parsons, C. (1990). The structuralist view of mathematical objects. Synthese, 84, 303–346.

    Article  Google Scholar 

  • Ramsey, F. (1925). The foundations of mathematics. Proceedings of the London Mathematical Society, 25, 338–394.

    Google Scholar 

  • Resnik, M. D. (1988). Second order logic still wild. Journal of Philosophy, 75, 75–87.

    Article  Google Scholar 

  • Russell, B. (1908). Mathematical logic as based on the theory of types. In J. van Heijenoort (Ed.), From Frege to Gödel (pp. 150–182). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Shapiro, S. (1997). Philosophy of mathematics. Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgements

I am grateful to my colleagues Pierdaniele Giaretta and Ernesto Napoli for a number of helpful comments. My best thanks to Aldo Antonelli for inviting me to write the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Martino .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martino, E. (2018). Arbitrary Reference in Mathematical Reasoning. In: Intuitionistic Proof Versus Classical Truth. Logic, Epistemology, and the Unity of Science, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-74357-8_12

Download citation

Publish with us

Policies and ethics