Advertisement

Brouwer, Dummett and the Bar Theorem

  • Enrico MartinoEmail author
Chapter
  • 228 Downloads
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 42)

Abstract

It is criticised Dummett’s refutation of Brouwer’s dogma. It is argued that his criticism rests on an erroneous interpretation of Brouwer’s idea of “canonical proof”.

References

  1. Brouwer, L. (1924a). Bemerkungen zum Beweis der gleichmässigen Stetigkeit voller Funktionen. Verhandelingen der Koninklijke Nederlandsche Akademie van Wetenschappen te Amsterdam, 27, 644–646.Google Scholar
  2. Brouwer, L. (1924b). Beweis, dass jede volle Funktion gleichmässig stetig ist. Verhandelingen der Koninklijke Nederlandsche Akademie van Wetenschappen te Amsterdam, 24, 189–193.Google Scholar
  3. Brouwer, L. (1926). Zur Begrüdndung der intuitionistischen Mathematik III. Mathematische Annalen, 96, 451–488.CrossRefGoogle Scholar
  4. Brouwer, L. (1927). Über Definitionsbereiche von Funktionen. Mathematische Annalen, 97, 60–75. English translation in From Frege to Gödel, Cambridge MA, 1967, pp. 446–463.CrossRefGoogle Scholar
  5. Brouwer, L. (1954). Points and spaces. Canadian Journal of Mathematics, 6, 1–17.CrossRefGoogle Scholar
  6. Dummett, M. (1977). Elements of intuitionism. Oxford: Clarendon Press.Google Scholar
  7. Heyting, A. (1956). Intuitionism: an introduction. Amsterdam: North-Holland Publishing Company.Google Scholar
  8. Kleene, S. C., & Vesley, R. E. (1965). The Foundations of intuitionistic mathematics. Amsterdam: North-Holland Publishing Company.Google Scholar
  9. Troelstra, A. (1969). Principles of intuitionism. Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.FISPPA DepartmentUniversity of PaduaPaduaItaly

Personalised recommendations