• Árpád Baricz
  • Dragana Jankov Maširević
  • Tibor K. Pogány
Part of the Lecture Notes in Mathematics book series (LNM, volume 2207)


In this chapter we will present various results concerning Neumann, Kapteyn and Schlömilch series with members containing functions from the Bessel functions family (Bessel functions of the first and second kind, modified Bessel functions of the first and second kind, Struve functions, modified Struve functions etc.). In Sects. 5.7–5.9 we consider Dini series and Jacobi polynomials, respectively. Next section is devoted to summations of Schlömilch series which members contain some von Lommel functions of the first kind. Section 5.11 finishes this chapter with Neumann–Meijer G series results.


  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)Google Scholar
  2. 7.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and it Applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  3. 9.
    April, A.: Power carried by a nonparaxial TM beam. J. Opt. Soc. Am. A 27, 76–81 (2010)Google Scholar
  4. 14.
    Baricz, Á.: Bounds for modified Bessel functions of the first and second kind. Proc. Edin. Math. Soc. 53(3), 575–599 (2010)Google Scholar
  5. 16.
    Baricz, Á., Koumandos, S.: Turán type inequalities for some Lommel functions of the first kind. Proc. Edinb. Math. Soc. 59, 569–579 (2016)Google Scholar
  6. 18.
    Baricz, Á., Pogány, T.K.: Integral representations and summations of modified Struve function. Acta Math. Hung. 141(3), 254–281 (2013)Google Scholar
  7. 19.
    Baricz, Á., Pogány, T.K.: Functional inequalities for Bickley function. Math. Inequal. Appl. 17(3), 989–1003 (2014)Google Scholar
  8. 20.
    Baricz, Á., Pogány, T.K.: Properties of the product of modified Bessel functions. In: Milovanović, G.V., Rassias, M.Th. (eds.) Analytic Number Theory, Approximation Theory, and Special Functions, pp. 809–820. Springer, Berlin (2014). In Honor of Hari M. SrivastavaGoogle Scholar
  9. 21.
    Baricz, Á., Pogány, T.K.: Turán determinants of Bessel functions. Forum Math. 26(1), 295–322 (2014)Google Scholar
  10. 23.
    Baricz, Á., Jankov, D., Pogány, T.K.: Integral representation of first kind Kapteyn series. J. Math. Phys. 52(4), Art. 043518, pp. 7 (2011)Google Scholar
  11. 24.
    Baricz, Á., Jankov, D., Pogány, T.K.: Integral representations for Neumann-type series of Bessel functions I ν, Y ν and K ν. Proc. Am. Math. Soc. 140(3), 951–960 (2012)Google Scholar
  12. 27.
    Baricz, Á., Jankov, D., Pogány, T.K.: Integral representations of Dini series of Bessel functions. Integral Transforms Spec. Funct. 24(8), 628–635 (2013)Google Scholar
  13. 29.
    Berndt, B., Levy, P.: Problem 76–11. A Bessel function summation. In: Klamkin, M. (ed.) Problems in Applied Mathematics: Selections from SIAM Review, pp. 179–180; 332–333. Society for Industrial and Applied Mathematics, Philadelphia (1990)Google Scholar
  14. 38.
    Bondarenko, V.F.: Efficient summation of Schlömilch series of cylindrical functions. USSR Comput. Math. Math. Phys. 31(7), 101–104 (1991)Google Scholar
  15. 40.
    Braaksma, B.L.J.: Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compos. Math. 15, 239–341 (1964)Google Scholar
  16. 41.
    Braaksma, B.L.J., Meulenbeld, B.: Jacobi polynomials as spherical harmonics. Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30, 384–389 (1968)Google Scholar
  17. 42.
    Brychkov, Yu.A.: Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. Chapman & Hall/CRC, Boca Raton (2008)Google Scholar
  18. 44.
    Butzer, P.L.: Bernoulli functions, Hilbert-type Poisson summation formulae, partial fraction expansions, and Hilbert-Eisenstein series. In: He, T.-X., Shiue, P.J.-S., Li, Z.-K. (eds.) Analysis, Combinatorics and Computing, pp. 25–91. Nova Science, Hauppauge, New York (2002)Google Scholar
  19. 45.
    Butzer, P.L., Hauss, M.: Applications of sampling theorem to combinatorial analysis, Stirling numbers, special functions and the Riemann zeta function. In: Higgins, J.R., Stens, R. (eds.) Sampling Theory in Fourier and Signal Analysis. Advanced Topics, 1–37, 266–268. Oxford University Press, Oxford (1999)Google Scholar
  20. 46.
    Butzer, P.L., Pogány, T.K., Srivastava, H.M.: A linear ODE for the Omega function associated with the Euler function E α(z) and the Bernoulli Function B α(z). Appl. Math. Lett. 19, 1073–1077 (2006)Google Scholar
  21. 64.
    Dijksma, A., Koornwinder, T.H.: Spherical harmonics and the product of two Jacobi polynomials. Nederl. Akad. Wetensch. Proc. Ser. A 74 = Indag. Math. 33, 191–196 (1971)Google Scholar
  22. 69.
    Dominici, D.: On Taylor series and Kapteyn series of the first and second type. J. Comput. Appl. Math. 236, 39–48 (2011)Google Scholar
  23. 71.
    Draščić, B., Pogány, T.K.: On integral representation of Bessel function of the first kind. J. Math. Anal. Appl. 308, 775–780 (2005)Google Scholar
  24. 74.
    Elbert, Á.: Asymptotic expansion and continued fraction for Mathieu’s series. Period. Math. Hung. 13, 1–8 (1982)Google Scholar
  25. 75.
    Emersleben, O.: Über die Reihe \(\sum _{k=1}^\infty \tfrac {k}{(k^2+c^2)^2}\). Math. Ann. 125, 165–171 (1952)Google Scholar
  26. 77.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York, Toronto, London (1953)Google Scholar
  27. 78.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York, Toronto, London (1953)Google Scholar
  28. 81.
    Feldheim, E.: Relations entre les polynômes de Jacobi, Laguerre et Hermite. Acta. Math. 75, 117–138 (1942)Google Scholar
  29. 82.
    Fichter, W.B.: Stress concentration around brokened filaments in a filament-stiffened sheet. NASA Technical Note TN D-5453, 35pp. (1969)Google Scholar
  30. 84.
    Fourier, J.B.J.: La Théorie Analytique de la Chaleur. Chez Firmin Didot, pere et fils (1822)Google Scholar
  31. 85.
    Gajewski, T.: Phase shifts for singular type nucleon-nucleon triplet-even potentials. Nucl. Phys. 46, 203–209 (1963)Google Scholar
  32. 90.
    Glasser, M.L.: A class of Bessel summations. Math. Comput. 37, 499–501 (1981)Google Scholar
  33. 91.
    Glasser, M.L.: Integral representations for the exceptional univariate Lommel functions. J. Phys. A 43(15), 155207, 4 pp. (2010)Google Scholar
  34. 93.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic, San Diego, CA (2000)Google Scholar
  35. 97.
    Gubler, E.: Über bestimmte Integrale mit Besselschen Funktionen. Zürich. Naturf. Ges. 47, 422–428 (1902)Google Scholar
  36. 99.
    Hamburger, H.: Über einige Beziehungen, die mit der Funktionalgleichung der Riemannschen ζ–Funktion äquivalent sind. Math. Anal. 85, 129–140 (1922)Google Scholar
  37. 112.
  38. 124.
    Hurley, W.G., Wilcox, D.J.: Calculation of leakage inductance in transformer windings. IEEE Trans. Power Electron. 9, 121–126 (1994)Google Scholar
  39. 126.
    Ismail, M.E.H., Muldoon, M.E.: Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2(1), 1–21 (1995)Google Scholar
  40. 127.
    Itagaki, M.: Boundary element techniques for two-dimensional nuclear reactor calculations. Eng. Anal. 4, 190–198 (1987)Google Scholar
  41. 128.
    Itô, K. (ed.): Encyclopedic Dictionary of Mathematics, vol. 2, 2nd edn. MIT, Cambridge (1986)Google Scholar
  42. 131.
    Jankov, D., Pogány, T.K.: Integral representation of Schlömilch series. J. Class. Anal. 1(1), 75–84 (2012)Google Scholar
  43. 132.
    Jankov, D., Pogány, T.K.: Integral representations of functional series with members containing Jacobi polynomials. Math. Balkan. (N.S.) 26(1–2), 103–112 (2012)Google Scholar
  44. 133.
    Jankov, D., Pogány, T.K.: On coefficients of Kapteyn-type series. Math. Slovaca 64(2), 403–410 (2014)Google Scholar
  45. 134.
    Jankov, D., Pogány, T.K., Süli, E.: On the coefficients of Neumann series of Bessel functions. J. Math. Anal. Appl. 380(2), 628–631 (2011)Google Scholar
  46. 136.
    Jankov Maširević, D.: Summations of Schlömilch series containing some Lommel functions of the first kind terms. Integral Transforms Spec. Funct. 27(2), 153–162 (2016)Google Scholar
  47. 137.
    Jankov Maširević, D.: Summations of Schlömilch series containing Struve function terms. Georgian Math. J. 23(3), 363–366 (2016)Google Scholar
  48. 145.
    Kapteyn, W.: Recherches sur les functions de Fourier–Bessel. Ann. Sci. de l’École Norm. Sup. 3(10), 91–120 (1893)Google Scholar
  49. 146.
    Kapteyn, W.: On an expansion of an arbitrary function in a series of Bessel functions. Messenger Math. 35, 122–125 (1906)Google Scholar
  50. 155.
    Koepf, W., Schmersau, D.: Representations of orthogonal polynomials. J. Comput. Appl. Math. 90, 57–94 (1998)Google Scholar
  51. 158.
    Koumandos, S., Lamprecht, M.: The zeros of certain Lommel functions. Proc. Am. Math. Soc. 140(9), 3091–3100 (2012)Google Scholar
  52. 175.
    Lorch, L., Szego, P.: Closed expressions for some infinite series of Bessel and Struve functions. J. Math. Anal. Appl. 122, 47–57 (1987)Google Scholar
  53. 177.
    Love, E.R.: Inequalities for Laguerre functions. J. Inequal. Appl. 1, 293–299 (1997)Google Scholar
  54. 178.
    Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York-Toronto-London (1962)Google Scholar
  55. 179.
    Luke, Y.L.: The Special Functions and Their Approximations, vol. 1. Academic, New York (1969)Google Scholar
  56. 180.
    Luke, Y.L., Wimp, J.: Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray. Math. Comput. 17(84), 395–404 (1963)Google Scholar
  57. 186.
    Mathai, A.M., Saxena, R.K.: The H-functions with Applications in Statistics and Other Disciplines. Wiley, Halsted Press, New York (1978)Google Scholar
  58. 187.
    Mathieu, E.L.: Traité de Physique Mathématique. Theory de l’Elasticité des Corps Solides, vol. VI-VII. Gauthier–Villars, Paris (1890)Google Scholar
  59. 190.
    Meijer, C.S.: On the G-function I–VIII. Nederl. Akad. Wetensch. Proc. 49, 227–237, 344–356, 457–469, 632–641, 765–772, 936–943, 1063–1072, 1165–1175 (1946)Google Scholar
  60. 192.
    Mercer, J.M.: Effective isotropic dipole-dipole pair potential. Mol. Phys. 69, 625–638 (1990)Google Scholar
  61. 193.
    Milgram, M.S.: On some sums of Meijer’s G-function. Atomic Energy of Canada Limited Report AECL-5827, 8 pp. (1977)Google Scholar
  62. 194.
    Milgram, M.S.: On the properties of collision probability integrals in annular geometry. I. Analysis. J. Math. Phys. 18(12), 2456–2467 (1977)Google Scholar
  63. 195.
    Milgram, M.S.: Integral and series representations of Riemanns zeta function and Dirichlets eta function and a medley of related results. J. Math. 2013, Article ID 181724, 17 pp. (2013)Google Scholar
  64. 196.
    Milgram, M.S., Sly, K.N.: On the properties of collision probability integrals in annular geometry. II. Evaluation. J. Comput. Phys. 33, 417–424 (1979)Google Scholar
  65. 197.
    Miller, A.R.: m-dimensional Schlömilch series. Can. Math. Bull. 38(3), 347–351 (1995)Google Scholar
  66. 198.
    Miller, A.R.: On certain Schlömilch-type series. J. Comput. Appl. Math. 80, 83–95 (1997)Google Scholar
  67. 199.
    Miller, A.R.: On Mellin transform of products of Bessel and generalized hypergeometric functions. J. Comput. Appl. Math. 85, 271–286 (1997)Google Scholar
  68. 200.
    Miles, J.W., Huppert, H.E.: Lee waves in a stratified flow. Part 4. Perturbation approximations. J. Fluid Mech. 35, 497–525 (1969)Google Scholar
  69. 211.
    Nicholson, J.W.: Notes on Bessel functions. Q. J. Math. 42, 216–224 (1911)Google Scholar
  70. 217.
    Nielsen, N.: Recherches sur les séries de fonctions cylindriques dues á C. Neumann et W. Kapteyn. Ann. Sci. Éc. Norm. Super. 18, 39–75 (1901)Google Scholar
  71. 222.
    Nisteruk, C.J., Isihara, A.: Quantum-statistical distribution functions of a hard-sphere system. Phys. Rev. 154, 150–159 (1967)Google Scholar
  72. 224.
    Oberhettinger, F.: Tables of Bessel Transforms. Springer, New York (1972)Google Scholar
  73. 225.
    Oberhettinger, F.: Tables of Mellin Transforms. Springer, Berlin (1974)Google Scholar
  74. 230.
    Paris, R.B.: Struve and related functions. In: Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.) NIST Handbook of Mathematical Functions. pp. 287–301. Cambridge University Press, Cambridge (2010)Google Scholar
  75. 236.
    Petković, M.D., Glasser, M.L.: Problem 85–14. Infinite sums of Bessel functions. In: Klamkin, M. (ed.) Problems in Applied Mathematics: Selections from SIAM Review, pp. 175–176. Society for Industrial and Applied Mathematics, Philadelphia (1990)Google Scholar
  76. 246.
    Pogány, T.K., Srivastava, H.M.: Some improvements over Love’s inequality for the Laguerre function. Integral Transforms Spec. Funct. 18(5), 351–358 (2007)Google Scholar
  77. 247.
    Pogány, T.K., Srivastava, H.M.: Some two-sided bounding inequalities for the Butzer-Flocke-Hauss Omega function. Math. Ineq. Appl. 10, 587–595 (2007)Google Scholar
  78. 249.
    Pogány, T.K., Süli, E.: Integral representation for Neumann series of Bessel functions. Proc. Am. Math. Soc. 137(7), 2363–2368 (2009)Google Scholar
  79. 252.
    Pogány, T.K., Srivastava, H.M., Tomovski, ž.: Some families of Mathieu a–series and alternating Mathieu a-series. Appl. Math. Comput. 173(1), 69–108 (2006)Google Scholar
  80. 263.
    Rainville, E.D.: Special Functions. Macmillan, New York (1960)Google Scholar
  81. 265.
    Rawn, M.D.: On the summation of Fourier and Bessel series. J. Math. Anal. Appl. 193, 282–295 (1995)Google Scholar
  82. 271.
    Rusev, P.: Expansion of analytic functions in series of classical orthogonal polynomials. Banach Cent. Publ. 11, 287–298 (1983)Google Scholar
  83. 277.
    Schläfli, L.: Ueber die Convergenz der Entwicklung einer arbiträren Function f(x) nach den Bessel’schen Functionen \( \overset {\,\,\,a}{J}(\beta _1 x),\, \overset {\,\,\,a}{J}(\beta _2 x),\, \overset {\,\,\,a}{J}(\beta _3 x),\cdot \cdot \cdot \cdot \cdot ,\) wo β 1, β 2, β 3, … die positiven Wurzeln der Gleichung \(\overset {\,\,\,a}J(\beta )=0\) vorstellen. Math. Ann. 10, 137–142 (1876)Google Scholar
  84. 279.
    Schlömilch, O.X.: Über die Bessel’schen Function. Zeitschrift für Math. und Phys. II, 137–165 (1857)Google Scholar
  85. 286.
    Srivastava, H.M.: Some bounding inequalities for the Jacobi and related functions. Banach J. Math. Anal. 1(1), 131–138 (2007)Google Scholar
  86. 298.
    Stephens, G.L.: Scattering of plane waves by soft obstacles: anomalous diffraction theory for circular cylinders. Appl. Opt. 23, 954–959 (1984)Google Scholar
  87. 299.
    Struve, H.: Beitrag zur Theorie der Diffraction an Fernröhren. Ann. Physik Chem. 17, 1008–1016 (1882)Google Scholar
  88. 300.
    Szegő, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23, Revised edition. American Mathematical Society, Providence, RI (1959)Google Scholar
  89. 301.
    Szpankowski, W.: Average Case Analysis of Algorithms on Sequences. With a foreword by P. Flajolet. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (2001)Google Scholar
  90. 308.
    Tautz, R.C., Lerche, I., Dominici, D.: Methods for summing general Kapteyn series. J. Phys. A 44, 385202, 14 pp. (2011)Google Scholar
  91. 313.
    Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Clarendon Press, Oxford (1948)Google Scholar
  92. 316.
    Tričković, S.B., Stanković, M.S., Vidanović, M.V., Aleksić, V.N.: Integral transforms and summation of some Schlömilch series. In: Proceedings of the 5th International Symposium on Mathematical Analysis and its Applications (Niška Banja, Serbia). Mat. Vesnik 54, 211–218 (2002)Google Scholar
  93. 323.
    von Lommel, E.: Ueber eine mit den Besselschen Functionen verwandte Function. Math. Ann. 9, 425–444 (1876)Google Scholar
  94. 327.
    Walker, J.: The Analytical Theory of Light. Cambridge University Press, Cambridge (1904)zbMATHGoogle Scholar
  95. 331.
    Watkins, C.E., Berman, J.H.: On the kernel function of the integral equation relating the lift and downwash distributions of oscillating wings in supersonic flow. NACA Tech. Note 1257, 147–164 (1955)MathSciNetGoogle Scholar
  96. 332.
    Watkins, C.E., Runyan, H.L., Woolston, D.S.: On the kernel function of the integral equation relating the lift and downwash distributions of oscillating finite wings in subsonic flow. NACA Tech. Note 1234, 703–718 (1954)MathSciNetGoogle Scholar
  97. 333.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)zbMATHGoogle Scholar
  98. 339.
    Yates Jr., E.C.: Aerodynamic sensitivities for subsonic, sonic, and supersonic unsteady, nonplanar lifting-surface theory. NASA Technical Memorandum. 100502, N88–12459, 18pp. (1987)Google Scholar
  99. 341.
    Zayed, A.I.: A proof of new summation formulae by using sampling theorems. Proc. Am. Math. Soc. 117, 699–710 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  100. 342.
    Zayed, A.I.: Advances in Shannon’s Sampling Theory. CRC, Boca Raton (1993)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Árpád Baricz
    • 1
    • 2
  • Dragana Jankov Maširević
    • 3
  • Tibor K. Pogány
    • 1
    • 4
  1. 1.John von Neumann Faculty of Informatics, Institute of Applied MathematicsÓbuda UniversityBudapestHungary
  2. 2.Department of EconomicsBabeş–Bolyai UniversityCluj–NapocaRomania
  3. 3.Department of MathematicsJosip Juraj Strossmayer University of OsijekOsijekCroatia
  4. 4.Faculty of Maritime StudiesUniversity of RijekaRijekaCroatia

Personalised recommendations