Advertisement

Kapteyn Series

  • Árpád Baricz
  • Dragana Jankov Maširević
  • Tibor K. Pogány
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2207)

Abstract

In this chapter we deduce several results for Kapteyn series of Bessel and Kummer hypergeometric functions. We present some integral representations and results on coefficients by using the Euler-Maclaurin summation technique and the differential equation technique.

References

  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)Google Scholar
  2. 17.
    Baricz, Á., Pogány, T.K.: Inequalities for the one-dimensional analogous of the Coulomb potential. Acta Polytechnica Hung. 10(7), 53–67 (2013)Google Scholar
  3. 23.
    Baricz, Á., Jankov, D., Pogány, T.K.: Integral representation of first kind Kapteyn series. J. Math. Phys. 52(4), Art. 043518, pp. 7 (2011)Google Scholar
  4. 24.
    Baricz, Á., Jankov, D., Pogány, T.K.: Integral representations for Neumann-type series of Bessel functions I ν, Y ν and K ν. Proc. Am. Math. Soc. 140(3), 951–960 (2012)Google Scholar
  5. 37.
    Bessel, F.W.: Analytische Auflösung der Keplerschen Aufgabe. Abh. Preuß. Akad. Wiss. Berlin. XXV, 49–55 (1819)Google Scholar
  6. 54.
    Citrin, D.S.: Optical analogue for phase-sensitive measurements in quantum-transport experiments. Phys. Rev. B. 60(8), 5659–5663 (1999)Google Scholar
  7. 57.
    Colwell, P.: Bessel functions and Kepler’s equation. Am. Math. Mon. 99(1), 45–48 (1992)Google Scholar
  8. 67.
    Dominici, D.: A new Kapteyn series. Integral Transforms Spec. Funct. 18, 409–418 (2007)Google Scholar
  9. 68.
    Dominici, D.: An application of Kapteyn series to a problem from queueing theory. Proc. Appl. Math. Mech. 7(1), 2050005–2050006 (2007)Google Scholar
  10. 69.
    Dominici, D.: On Taylor series and Kapteyn series of the first and second type. J. Comput. Appl. Math. 236, 39–48 (2011)Google Scholar
  11. 73.
    Eisinberg, A., Fedele, G., Ferrise, A., Frascino, D.: On an integral representation of a class of Kapteyn (Fourier–Bessel) series: Kepler’s equation, radiation problems and Meissel’s expansion. Appl. Math. Lett. 23(11), 1331–1335 (2010)Google Scholar
  12. 79.
    Exton, H.: Generalized Neumann and Kapteyn expansions. J. Appl. Math. Stoch. Anal. 8(4), 415–422 (1995)Google Scholar
  13. 81.
    Feldheim, E.: Relations entre les polynômes de Jacobi, Laguerre et Hermite. Acta. Math. 75, 117–138 (1942)Google Scholar
  14. 93.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic, San Diego, CA (2000)Google Scholar
  15. 115.
  16. 130.
    Jankov, D.: Integral Expressions for Series of Functions of Hypergeometric and Bessel Types. Ph.D. Dissertation, Department of Mathematics, Faculty of Science, University of Zagreb, Zagreb (2011)Google Scholar
  17. 131.
    Jankov, D., Pogány, T.K.: Integral representation of Schlömilch series. J. Class. Anal. 1(1), 75–84 (2012)Google Scholar
  18. 133.
    Jankov, D., Pogány, T.K.: On coefficients of Kapteyn-type series. Math. Slovaca 64(2), 403–410 (2014)Google Scholar
  19. 134.
    Jankov, D., Pogány, T.K., Süli, E.: On the coefficients of Neumann series of Bessel functions. J. Math. Anal. Appl. 380(2), 628–631 (2011)Google Scholar
  20. 145.
    Kapteyn, W.: Recherches sur les functions de Fourier–Bessel. Ann. Sci. de l’École Norm. Sup. 3(10), 91–120 (1893)Google Scholar
  21. 146.
    Kapteyn, W.: On an expansion of an arbitrary function in a series of Bessel functions. Messenger Math. 35, 122–125 (1906)Google Scholar
  22. 147.
    Karamata, J.: Theory and Applications of Stieltjes integral. Srpska Akademija Nauka, Posebna izdanja CLIV, Matematički institut, Knjiga I, Beograd (1949) (in Serbian)Google Scholar
  23. 154.
    Knopp, K.: Theorie und Anwendungen der unendlichen Reihen. Vierte Auflage. Springer, Berlin, Heidelberg (1947)Google Scholar
  24. 166.
    Lagrange, J.L.: Sur le probléme de Kepler. Mèm. de l’Acad. des Sci. Berlin XXIV, 204–233 (1771)Google Scholar
  25. 167.
    Landau, L.: Monotonicity and bounds on Bessel functions. In: Warchall, H. (ed.) Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory. Berkeley, CA (June 11–13, 1999), pp. 147–154 (2000). Electron. J. Differential Equations 4, Southwest Texas State University, San Marcos, TX (2000)Google Scholar
  26. 168.
    Lerche, I., Tautz, R.C.: A note on summation of Kapteyn series in astrophysical problems. Astrophys. J. 665, 1288–1291 (2007)Google Scholar
  27. 169.
    Lerche, I., Tautz, R.C.: Kapteyn series arising in radiation problems. J. Phys. A 41(3), Art. 035202 (2008)Google Scholar
  28. 170.
    Lerche, I., Schlickeiser, R., Tautz, R.C.: Comment on a new derivation of the plasma susceptibility tensor for a hot magnetized plasma without infinite sums of products of Bessel functions. Phys. Plasmas 15(2), Art. 024701 (2008)Google Scholar
  29. 171.
    Lerche, I., Tautz, R.C., Citrin, D.S.: Terahertz-sideband spectra involving Kapteyn series. J. Phys. A 42(36), Art. 365206 (2009)Google Scholar
  30. 182.
    Marshall, T.W.: On the sums of a family of Kapteyn series. Z. Angew. Math. Phys. 30, 1011–1016 (1979)Google Scholar
  31. 183.
    Martin, P.A.: Acoustic waves in slender axisymmetric tubes. J. Sound Vib. 286, 55–68 (2005)Google Scholar
  32. 185.
    Mathai, A.M., Saxena, R.K.: Generalized Hypergeometric Fuctions with Applications in Statistics and Physical Sciences. Springer, New York (1973)Google Scholar
  33. 217.
    Nielsen, N.: Recherches sur les séries de fonctions cylindriques dues á C. Neumann et W. Kapteyn. Ann. Sci. Éc. Norm. Super. 18, 39–75 (1901)Google Scholar
  34. 226.
    Olenko, A.Ya.: Upper bound on \(\sqrt {x}J_\nu (x)\) and its applications. Integral Transforms Spec. Funct. 17(6), 455–467 (2006)Google Scholar
  35. 227.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. NIST and Cambrigde University Press, Cambridge (2010)Google Scholar
  36. 228.
    Pak, I.N.: Series in Bessel functions. Izv. Vyssh. Uchebn. Zaved. Mat. 4, 34–47 (1981) (in Russian)Google Scholar
  37. 229.
    Pak, I.N.: Asymptotic formulas and estimates for sums of special Kapteyn series. Izv. Vyssh. Uchebn. Zaved. Mat. 8, 47–57, 88 (1987) (in Russian)Google Scholar
  38. 238.
    Platzman, G.W.: An exact integral of complete spectral equations for unsteady one-dimensional flow. Tellus 4, 422–431 (1964)Google Scholar
  39. 239.
    Pogány, T.K.: Integral representation of a series which includes the Mathieu a-series. J. Math. Anal. Appl. 296(1), 309–313 (2004)Google Scholar
  40. 242.
    Pogány, T.K.: Convergence of generalized Kapteyn expansion. Appl. Math. Comput. 190, 1844–1847 (2007)Google Scholar
  41. 244.
    Pogány, T.K.: Essays on Fourier–Bessel Series. Habilitation Thesis. Applied Mathematical Institute, Óbuda University, Budapest (2015)Google Scholar
  42. 249.
    Pogány, T.K., Süli, E.: Integral representation for Neumann series of Bessel functions. Proc. Am. Math. Soc. 137(7), 2363–2368 (2009)Google Scholar
  43. 254.
    Pogány, T.K., Baricz, Á., Szakál, A.: On Kapteyn-Kummer Series’ Integral Form. In: Proceedings of the 11th International Symposium of Applied Computational Intelligence and Informatics - SACI’16 (May 12–14), Timişoara, Romania, pp. 119–122 (2016)Google Scholar
  44. 280.
    Schott, G.A.: Electromagnetic Radiation and the Mechanical Reactions Arising From It, Being an Adams Prize Essay in the University of Cambridge. Cambridge University Press, Cambridge (1912)Google Scholar
  45. 281.
    Shalchi, A., Schlickeiser, R.: Cosmic ray transport in anisotropic magnetohydrodynamic turbulence III Mixed magnetosonic and Alfvènic turbulence. Astron. Astrophys. 420(3), 799–808 (2004)Google Scholar
  46. 294.
    Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982)Google Scholar
  47. 306.
    Tautz, R.C., Dominici, D.: The analytical summation of a new class of Kapteyn series. Phys. Lett. A 374, 1414–1419 (2010)Google Scholar
  48. 307.
    Tautz, R.C., Lerche, I.: A review of procedures for summing Kapteyn series in mathematical physics. Adv. Math. Phys. 2009, Art. 425164 (2009)Google Scholar
  49. 312.
    Thomson, J.J.: The magnetic properties of systems of corpuscles describing circular orbits. Philos. Mag. 6, 673–693 (1903)Google Scholar
  50. 333.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Árpád Baricz
    • 1
    • 2
  • Dragana Jankov Maširević
    • 3
  • Tibor K. Pogány
    • 1
    • 4
  1. 1.John von Neumann Faculty of Informatics, Institute of Applied MathematicsÓbuda UniversityBudapestHungary
  2. 2.Department of EconomicsBabeş–Bolyai UniversityCluj–NapocaRomania
  3. 3.Department of MathematicsJosip Juraj Strossmayer University of OsijekOsijekCroatia
  4. 4.Faculty of Maritime StudiesUniversity of RijekaRijekaCroatia

Personalised recommendations