Introduction and Preliminaries

  • Árpád Baricz
  • Dragana Jankov Maširević
  • Tibor K. Pogány
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2207)

Abstract

We begin with a brief outline of special functions and methods, which will be needed in the next chapters. We recall here briefly the Gamma, Beta, Digamma functions, Pochhammer symbol, Bernoulli polynomials and numbers, Bessel, modified Bessel, generalized hypergeometric, Fox–Wright generalized hypergeometric, Hurwitz–Lerch Zeta functions, the Euler–Maclaurin summation formula together with Dirichlet series and Cahen’s formula, Mathieu series, Bessel and Struve differential equations, Fourier-Bessel and Dini series of Bessel functions and fractional differintegral.

References

  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)Google Scholar
  2. 3.
    Alexits, Gy.: Convergence Problems of Orthogonal Series. Translated from the German by I. Földes. International Series of Monographs in Pure and Applied Mathematics, vol. 20. Pergamon, New York-Oxford-Paris (1961)Google Scholar
  3. 7.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and it Applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  4. 8.
    Appell, P., Kampé de Fériet, J.: Fonctions Hypergeometrique. Polynomes d’Hermite. Gautier-Villars, Paris (1926)Google Scholar
  5. 10.
    Ashbaugh, M.S., Benguria, R.D.: Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions. SIAM J. Math. Anal. 24, 557–570 (1993)Google Scholar
  6. 12.
    Baricz, Á.: Functional inequalities for Galué’s generalized modified Bessel functions. J. Math. Inequal. 1(2), 183–193 (2007)Google Scholar
  7. 15.
    Baricz, Á.: Generalized Bessel functions of the first kind. Lecture Notes in Mathematics, vol. 1994. Springer, Berlin (2010)Google Scholar
  8. 212.
    Nielsen, N.: Flertydige Udviklinger efter Cylinderfunktioner. Nyt Tidsskrift X B, 73–81 (1899)Google Scholar
  9. 213.
    Nielsen, N.: Note sur les développements schloemilchiens en série de fonctions cylindriques. Oversigt K. Danske Videnskabernes Selskabs 661–665 (1899)Google Scholar
  10. 214.
    Nielsen, N.: Sur le développement de zéro en fonctions cylindriques. Math. Ann. LII, 582–587 (1899)Google Scholar
  11. 215.
    Nielsen, N.: Note supplémentaire relative aux développements schloemilchiens en série de fonctions cylindriques. Oversigt K. Danske Videnskabernes Selskabs 55–60 (1900)Google Scholar
  12. 217.
    Nielsen, N.: Recherches sur les séries de fonctions cylindriques dues á C. Neumann et W. Kapteyn. Ann. Sci. Éc. Norm. Super. 18, 39–75 (1901)Google Scholar
  13. 18.
    Baricz, Á., Pogány, T.K.: Integral representations and summations of modified Struve function. Acta Math. Hung. 141(3), 254–281 (2013)Google Scholar
  14. 20.
    Baricz, Á., Pogány, T.K.: Properties of the product of modified Bessel functions. In: Milovanović, G.V., Rassias, M.Th. (eds.) Analytic Number Theory, Approximation Theory, and Special Functions, pp. 809–820. Springer, Berlin (2014). In Honor of Hari M. SrivastavaGoogle Scholar
  15. 21.
    Baricz, Á., Pogány, T.K.: Turán determinants of Bessel functions. Forum Math. 26(1), 295–322 (2014)Google Scholar
  16. 23.
    Baricz, Á., Jankov, D., Pogány, T.K.: Integral representation of first kind Kapteyn series. J. Math. Phys. 52(4), Art. 043518, pp. 7 (2011)Google Scholar
  17. 24.
    Baricz, Á., Jankov, D., Pogány, T.K.: Integral representations for Neumann-type series of Bessel functions I ν, Y ν and K ν. Proc. Am. Math. Soc. 140(3), 951–960 (2012)Google Scholar
  18. 36.
    Bernoulli, D.: Demonstrationes theorematum suorum de oscillationibus corporum filo flexili connexorum et catenae verticaliter suspensae. Commentarii Academiae Scientiarum Imperialis Petropolitanae 7, 162–173 (1734)Google Scholar
  19. 39.
    Bowman, F.: Introduction to Bessel Functions. Dover, New York (1958)Google Scholar
  20. 47.
    Cahen, E.: Sur la fonction ζ(s) de Riemann et sur des fontions analogues. Ann. Sci. l’École Norm. Sup. Sér. Math. 11, 75–164 (1894)Google Scholar
  21. 51.
    Chessin, A.S.: Sur l’équation de Bessel avec second membre. Compt. Rend. 135, 678–679 (1902)Google Scholar
  22. 52.
    Chessin, A.S.: Sur une classe d’équations différentielles réductibles a l’équation de Bessel. Compt. Rend. 136, 1124–1126 (1903)Google Scholar
  23. 53.
    Cerone, P., Lenard, C.T.: On integral forms of generalized Mathieu series. J. Inequal. Pure Appl. Math. 4(5), Art. 100, 1–11 (2003)Google Scholar
  24. 58.
    Cvijović, D.: New integral representation of the polylogarithm function. Proc. R. Soc. A 463, 897–905 (2007)Google Scholar
  25. 59.
    Davis, P.J.: Leonhard Euler’s integral: a historical profile of the Gamma function. Am. Math. Mon. 66(10), 849–869 (1959)Google Scholar
  26. 61.
    Delerue, P.: Sur le calcul symbolic à n variables et fonctions hyperbesséliennes II. Annales Soc. Sci. Bruxelle Ser. 1 3, 229–274 (1953)Google Scholar
  27. 65.
    Dimovski, I.H., Kiryakova, V.S.: Generalized Poisson transmutations and corresponding representations of hyper-Bessel functions. C. R. Acad. Bulg. Sci. 39(10), 29–32 (1986)Google Scholar
  28. 66.
    Dini, U.: Serie di Fourier e altre rappresentazioni analitiche delle funzioni di una variabile reale. Tipografia T. Nistri e C., Pisa (1880)Google Scholar
  29. 69.
    Dominici, D.: On Taylor series and Kapteyn series of the first and second type. J. Comput. Appl. Math. 236, 39–48 (2011)Google Scholar
  30. 70.
    Draščić Ban, B.: Mathieu Type Series and Dirichlet Series. Ph.D. Dissertation, University of Zagreb, Zagreb (2009) (in Croatian)Google Scholar
  31. 72.
    Dutka, J.: On the early history of Bessel functions. Arch. Hist. Exact Sci. 49(2), 105–134 (1995)Google Scholar
  32. 77.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York, Toronto, London (1953)Google Scholar
  33. 83.
    Filon, L.N.G.: On the expansion of polynomials in series of functions. Proc. Lond. Math. Soc. (Ser. 2). IV, 396–430 (1907)Google Scholar
  34. 84.
    Fourier, J.B.J.: La Théorie Analytique de la Chaleur. Chez Firmin Didot, pere et fils (1822)Google Scholar
  35. 86.
    Galué, L.: A generalized Bessel function. Integral Transforms Spec. Funct. 14, 395–401 (2003)Google Scholar
  36. 87.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and it Applications, vol. 35. Cambridge University Press, Cambridge (1990)Google Scholar
  37. 88.
    Gegenbauer, L.B.: Über die Bessel’schen Funktionen. Wiener Sitzungsberichte 69, 1–11 (1874)Google Scholar
  38. 89.
    Gegenbauer, L.B.: Zur Theorie der Bessel’schen Funktionen. Wiener Sitzungsberichte 75(2), 218–222 (1877)Google Scholar
  39. 93.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic, San Diego, CA (2000)Google Scholar
  40. 98.
    Guess, F., Proschan, F.: Mean residual life: theory and applications. In: Krishnaiah, P.R., Rao, C.R. (eds.) Quality Control and Reliability. Handbook of Statistics, vol. 7, pp. 215–224. North-Holland, Amsterdam (1988)Google Scholar
  41. 100.
    Hankel, H.: Die Cylinderfunctionen erster und zweiter Art (Dec. 15, 1868). Math. Ann 1, 467–501 (1869)Google Scholar
  42. 101.
    Hankel, H.: Die Fourier’schen Reihen und Integrale für Cylinderfunctionen. Math. Ann. VIII, 471–490 (1875)Google Scholar
  43. 104.
    Hardy, G.H., Riesz, M.: The General Theory of Dirichlet’s Series. Cambridge University Press, Cambridge (1915)Google Scholar
  44. 106.
    Harnack, A.: Ueber die Darstellung einer willkürlichen Function durch die Fourier–Bessel’schen Functionen. Math. Ann. XXXV, 41–62 (1890); Abgedruckt aus den Leipziger Sitzungsberichten XXXI, 191–214 (1887)Google Scholar
  45. 109.
    Hille, E.: On Laguerre’s series. First note. Proc. Natl. Acad. Sci. 12(4), 261–265 (1926)Google Scholar
  46. 111.
    Hille, E.: On Laguerre’s series. Third note. Proc. Natl. Acad. Sci. 12(5), 348–352 (1926)Google Scholar
  47. 120.
  48. 121.
  49. 129.
    Ivanov, V.K.: Higher-dimensional generalizations of the Euler summation formula. Izv. Vysš. Učebn. Zaved. Matematika 6(37), 72–80 (1963) (in Russian)Google Scholar
  50. 131.
    Jankov, D., Pogány, T.K.: Integral representation of Schlömilch series. J. Class. Anal. 1(1), 75–84 (2012)Google Scholar
  51. 134.
    Jankov, D., Pogány, T.K., Süli, E.: On the coefficients of Neumann series of Bessel functions. J. Math. Anal. Appl. 380(2), 628–631 (2011)Google Scholar
  52. 141.
    Jankov Maširević, D., Parmar, R.K., Pogány, T.K.: (p, q)–extended Bessel and modified Bessel functions of the first kind. Results Math. 72(1–2), 617–632 (2017)Google Scholar
  53. 144.
    Kaczmarz, S., Steinhaus, H.: Theorie der Orthogonalreihen. Monografie Matematyczne 6. Seminarium Matematyczne Uniwersytetu Warszawskiego; Instytut Matematyczny PAN, Warszawa, Lwow (1935)Google Scholar
  54. 145.
    Kapteyn, W.: Recherches sur les functions de Fourier–Bessel. Ann. Sci. de l’École Norm. Sup. 3(10), 91–120 (1893)Google Scholar
  55. 146.
    Kapteyn, W.: On an expansion of an arbitrary function in a series of Bessel functions. Messenger Math. 35, 122–125 (1906)Google Scholar
  56. 147.
    Karamata, J.: Theory and Applications of Stieltjes integral. Srpska Akademija Nauka, Posebna izdanja CLIV, Matematički institut, Knjiga I, Beograd (1949) (in Serbian)Google Scholar
  57. 149.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies, vol. 204. Elsevier (North-Holland) Science Publishers, Amsterdam, London, New York (2006)Google Scholar
  58. 150.
    Kiryakova, V.S.: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematical Series, vol. 301. Longman Group UK Ltd., Harlow (1994)Google Scholar
  59. 151.
    Kiryakova, V.S., Hernandez–Suarez, V.: Bessel-Clifford third order differential operator and corresponding Laplace type integral transform. Diss. Math. 340, 143–161 (1995)Google Scholar
  60. 153.
    Ključancev, M.I.: Singular differential operators with (r1) parameters and Bessel functions of vector index. Sibirsk. Mat. Zh. 24(3), 47–62 (1983) (In Russian)Google Scholar
  61. 159.
    Krasikov, I.: Uniform bounds for Bessel functions. J. Appl. Anal. 12(1), 83–91 (2006)Google Scholar
  62. 160.
    Krasikov, I.: Approximations for the Bessel and Airy functions with an explicit error term. LMS J. Comput. Math. 17(1), 209–225 (2014)Google Scholar
  63. 161.
    Krasikov, I.: On the Bessel function J ν(x) in the transition region. LMS J. Comput. Math. 17(1), 273–281 (2014)Google Scholar
  64. 167.
    Landau, L.: Monotonicity and bounds on Bessel functions. In: Warchall, H. (ed.) Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory. Berkeley, CA (June 11–13, 1999), pp. 147–154 (2000). Electron. J. Differential Equations 4, Southwest Texas State University, San Marcos, TX (2000)Google Scholar
  65. 172.
    Lin, S.D., Srivastava, H.M.: Some families of Hurwitz–Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 154, 725–733 (2004)Google Scholar
  66. 173.
    Lin, S.D., Shyu, J.C., Nishimoto, K., Srivastava, H.M.: Explicit solutions of some general families of ordinary and partial differential equations associated with the Bessel equation by means of fractional calculus. J. Fract. Calc. 25, 33–45 (2004)Google Scholar
  67. 174.
    Lin, S.D., Ling, W.C., Nishimoto, K., Srivastava, H.M.: A simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications. Comput. Math. Appl. 49(9–10), 1487–1498 (2005)Google Scholar
  68. 176.
    Lorch, L., Szego, P.: Bounds and monotonicities for the zeros of derivatives of ultraspherical Bessel functions. SIAM J. Math. Anal. 25(2), 549–554 (1994)Google Scholar
  69. 178.
    Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York-Toronto-London (1962)Google Scholar
  70. 187.
    Mathieu, E.L.: Traité de Physique Mathématique. Theory de l’Elasticité des Corps Solides, vol. VI-VII. Gauthier–Villars, Paris (1890)Google Scholar
  71. 188.
    Maximon, L.C.: On the representation of indefinite integrals containing Bessel functions by simple Neumann series. Proc. Am. Math. Soc. 7(6), 1054–1062 (1956)Google Scholar
  72. 199.
    Miller, A.R.: On Mellin transform of products of Bessel and generalized hypergeometric functions. J. Comput. Appl. Math. 85, 271–286 (1997)Google Scholar
  73. 202.
    Mitrinović, D.S.: Analytic Inequalities. Springer, Berlin-Heidelberg-New York (1970)Google Scholar
  74. 204.
    Mortici, C.: Accurate approximations of the Mathieu series. Math. Comput. Model. 53(5–6), 909–914 (2011)Google Scholar
  75. 205.
    Müller, C.: Eine Verallgemeinerung der Eulerschen Summenformel und ihre Anwendung auf Fragen der analytischen Zahlentheorie. Abh. Math. Sem. Univ. Hamburg 19(2), 4162 (1954)Google Scholar
  76. 207.
    Nadarajah, S., Kotz, S.: A generalized Planck distribution. Test 15(2), 361–374 (2006)Google Scholar
  77. 209.
    Neumann, C.G.: Theorie der Besselschen Funktionen. B.G. Teubner, Leipzig (1867)Google Scholar
  78. 216.
    Nielsen, N.: Recherches sur une classe de séries infinies analogue á celle de M. W. Kapteyn. Oversigt K. Danske Videnskabernes Selskabs 127–146 (1901)Google Scholar
  79. 218.
    Nielsen, N.: Sur une classe de séries infinies analogues á celles de Schlömilch selon les fonctions cylindriques. Ann. di Mat. VI(3), 301–329 (1901)Google Scholar
  80. 220.
    Nishimoto, K.: Fractional Calculus, vols. I, II, III, IV, V. Descartes Press, Koriyama (1984, 1987, 1989, 1991 and 1996)Google Scholar
  81. 221.
    Nishimoto, K.: An Essence of Nishimoto’s Fractional Calculus, Calculus of the 21st Century: Integrations and Differentiations of Arbitrary Order. Descartes Press, Koriyama (1991)Google Scholar
  82. 226.
    Olenko, A.Ya.: Upper bound on \(\sqrt {x}J_\nu (x)\) and its applications. Integral Transforms Spec. Funct. 17(6), 455–467 (2006)Google Scholar
  83. 227.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. NIST and Cambrigde University Press, Cambridge (2010)Google Scholar
  84. 231.
    Pathak, R.S., Singh, O.P.: Finite Hankel transforms of distributions. Pac. J. Math. 99(2), 439–458 (1982)Google Scholar
  85. 239.
    Pogány, T.K.: Integral representation of a series which includes the Mathieu a-series. J. Math. Anal. Appl. 296(1), 309–313 (2004)Google Scholar
  86. 240.
    Pogány, T.K.: Integral representation of Mathieu (a, λ)-series. Integral Transforms Spec. Funct. 16(8), 685–689 (2005)Google Scholar
  87. 241.
    Pogány, T.K.: Multiple Euler–McLaurin summation formula. Mat. Bilten 29, 37–40 (2005)Google Scholar
  88. 243.
    Pogány, T.K.: Further results on generalized Kapteyn-type expansions. Appl. Math. Lett. 22(2), 192–196 (2009)Google Scholar
  89. 245.
    Pogány, T.K., Parmar, R.K.: On p–extended Mathieu series. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. (2018) (to appear)Google Scholar
  90. 248.
    Pogány, T.K., Srivastava, H.M.: Some Mathieu-type series associated with the Fox-Wright function. Comput. Math. Appl. 57, 127–140 (2009)Google Scholar
  91. 249.
    Pogány, T.K., Süli, E.: Integral representation for Neumann series of Bessel functions. Proc. Am. Math. Soc. 137(7), 2363–2368 (2009)Google Scholar
  92. 250.
    Pogány, T.K., Tomovski, ž.: On multiple generalized Mathieu series. Integral Transforms Spec. Funct. 17(4), 285–293 (2006)Google Scholar
  93. 251.
    Pogány, T.K., Tomovski, ž.: On Mathieu-type series whose terms contain generalized hypergeometric function p F q and Meijer’s G-function. Math. Comput. Model. 47(9–10), 952–969 (2008)Google Scholar
  94. 252.
    Pogány, T.K., Srivastava, H.M., Tomovski, ž.: Some families of Mathieu a–series and alternating Mathieu a-series. Appl. Math. Comput. 173(1), 69–108 (2006)Google Scholar
  95. 259.
    Qi, F.: Inequalities for Mathieu series. RGMIA Res. Rep. Coll. 4(2) Art. 3, 187–193 (2001)Google Scholar
  96. 260.
    Qi, F.: An integral expression and some inequalities of Mathieu type series. Rostock Math. Kolloq. 58(2), 37–46 (2004)Google Scholar
  97. 263.
    Rainville, E.D.: Special Functions. Macmillan, New York (1960)Google Scholar
  98. 266.
    Rayleigh, J.W.S.: On a Physical Interpretation of Schlömilch’s Theorem in Bessel’s Functions. Philos. Mag. 6, 567–571 (1911)Google Scholar
  99. 275.
    Saxena, R.K., Pogány, T.K., Saxena, R., Jankov, D.: On generalized Hurwitz-Lerch Zeta distributions occurring in statistical inference. Acta Univ. Sapientiae Math. 3(1), 43–59 (2011)Google Scholar
  100. 277.
    Schläfli, L.: Ueber die Convergenz der Entwicklung einer arbiträren Function f(x) nach den Bessel’schen Functionen \( \overset {\,\,\,a}{J}(\beta _1 x),\, \overset {\,\,\,a}{J}(\beta _2 x),\, \overset {\,\,\,a}{J}(\beta _3 x),\cdot \cdot \cdot \cdot \cdot ,\) wo β 1, β 2, β 3, … die positiven Wurzeln der Gleichung \(\overset {\,\,\,a}J(\beta )=0\) vorstellen. Math. Ann. 10, 137–142 (1876)Google Scholar
  101. 279.
    Schlömilch, O.X.: Über die Bessel’schen Function. Zeitschrift für Math. und Phys. II, 137–165 (1857)Google Scholar
  102. 283.
    Sitnik, S.M.: Inequalities for Bessel functions. Dokl. Akad. Nauk 340(1), 29–32 (1995) (in Russian)Google Scholar
  103. 284.
    Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)Google Scholar
  104. 287.
    Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht, Boston, London (2001)Google Scholar
  105. 288.
    Srivastava, H.M., Daoust, M.C.: On Eulerian integrals associated with Kampé de Fériet’s function. Publ. Inst. Math. (Beograd) (N.S.) 9(23), 199–202 (1969)Google Scholar
  106. 289.
    Srivastava, H.M., Daoust, M.C.: A note on the convergence of Kampé de Fériet double hypergeometric series. Math. Nachr. 53, 151–159 (1972)Google Scholar
  107. 290.
    Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd./Halsted Press [Wiley], Chichester/New York (1985)Google Scholar
  108. 291.
    Srivastava, H.M., Panda, R.: An integral representation for the product of two Jacobi polynomials. J. Lond. Math. Soc. (2) 12, 419–425 (1976)Google Scholar
  109. 292.
    Srivastava, H.M., Pogány, T.K.: Inequalities for a unified family of Voigt functions in several variables. Russ. J. Math. Phys. 14(2), 194–200 (2007)Google Scholar
  110. 293.
    Srivastava, H.M., Tomovski, ž.: Some problems and solutions involving Mathieu’s series and its generalizations. J. Inequal. Pure Appl. Math. 5(2) Art. 45, 1–13 (2004)Google Scholar
  111. 295.
    Srivastava, H.M., Saxena, R.K., Pogány, T.K., Saxena, R.: Integral and computational representations of the extended Hurwitz–Lerch Zeta function. Integral Trasforms Spec. Funct. 22, 487–506 (2011)Google Scholar
  112. 296.
    Srivastava, H.M., Jankov, D., Pogány, T.K., Saxena, R.K.: Two-sided inequalities for the extended Hurwitz–Lerch Zeta function. Comput. Math. Appl. 62(1), 516–522 (2011)Google Scholar
  113. 297.
    Stanković, B.: On the function of E. M. Wright. Publ. Inst. Math. (Beograd) (N.S.) 10(24), 113–124 (1970)Google Scholar
  114. 299.
    Struve, H.: Beitrag zur Theorie der Diffraction an Fernröhren. Ann. Physik Chem. 17, 1008–1016 (1882)Google Scholar
  115. 302.
    Tannery, J., Molk, N.: Éléments de la théorie des fonctions elliptiques. Vol. I: Calcul differentiel I. Applications. Gauthier-Villars, Paris (1893)Google Scholar
  116. 303.
    Tannery, J., Molk, N.: Éléments de la théorie des fonctions elliptiques. Vol. II: Calcul differentiel I. Applications. Applications. Gauthier-Villars, Paris (1896)Google Scholar
  117. 304.
    Tannery, J., Molk, N.: Éléments de la théorie des fonctions elliptiques. Vol. III: Calcul integral I. Gauthier-Villars, Paris (1898)Google Scholar
  118. 305.
    Tannery, J., Molk, N.: Éléments de la théorie des fonctions elliptiques. Vol. IV: Calcul integral II. Gauthier-Villars, Paris (1902)Google Scholar
  119. 308.
    Tautz, R.C., Lerche, I., Dominici, D.: Methods for summing general Kapteyn series. J. Phys. A 44, 385202, 14 pp. (2011)Google Scholar
  120. 310.
    Temme, N.M.: Special Functions. An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York (1996)Google Scholar
  121. 314.
    Tolstov, G.P.: Fourier Series. Second English translation. Translated from the Russian and with a preface by Richard A. Silverman. Dover, New York (1976)Google Scholar
  122. 316.
    Tričković, S.B., Stanković, M.S., Vidanović, M.V., Aleksić, V.N.: Integral transforms and summation of some Schlömilch series. In: Proceedings of the 5th International Symposium on Mathematical Analysis and its Applications (Niška Banja, Serbia). Mat. Vesnik 54, 211–218 (2002)Google Scholar
  123. 322.
    von Lommel, E.C.J.: Studien über die Bessel’schen Functionen. B. G. Teubner, Leipzig (1868)Google Scholar
  124. 328.
    Wang, P.Y.: Solutions of Some Certain Classes of Differential Equations by Means of Fractional Calculus. Ph.D. Dissertation, Department of Applied Mathematics, Chung Yuan Christian University Chung-Li, Taiwan (2006)Google Scholar
  125. 329.
    Wang, P.Y., Lin, S.D., Srivastava, H.M.: Remarks on a simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications. Comput. Math. Appl. 51(1), 105–114 (2006)MathSciNetCrossRefMATHGoogle Scholar
  126. 330.
    Wang, P.Y., Lin, S.D., Tu, S.T.: A survey of fractional-calculus approaches to the solutions of the Bessel differential equation of general order. Appl. Math. Comput. 187(1), 544–555 (2007)MathSciNetMATHGoogle Scholar
  127. 333.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)MATHGoogle Scholar
  128. 334.
    Wilkins Jr., J.E.: Neumann series of Bessel functions. Trans. Am. Math. Soc. 64, 359–385 (1948)MathSciNetCrossRefMATHGoogle Scholar
  129. 338.
    Wright, E.M.: The asymptotic expansion of the generalized Bessel function. Proc. Lond. Math. Soc. (2) 38, 257–270 (1934)Google Scholar
  130. 340.
    Yen, C.E., Lin, M.L., Nishimoto, K.: An integral form for a generalized Zeta function. J. Fract. Calc. 23, 99–102 (2002)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Árpád Baricz
    • 1
    • 2
  • Dragana Jankov Maširević
    • 3
  • Tibor K. Pogány
    • 1
    • 4
  1. 1.John von Neumann Faculty of Informatics, Institute of Applied MathematicsÓbuda UniversityBudapestHungary
  2. 2.Department of EconomicsBabeş–Bolyai UniversityCluj–NapocaRomania
  3. 3.Department of MathematicsJosip Juraj Strossmayer University of OsijekOsijekCroatia
  4. 4.Faculty of Maritime StudiesUniversity of RijekaRijekaCroatia

Personalised recommendations