Landslides Types and Their Failure Mechanisms

Chapter

Abstract

This chapter explores the different peculiar aspects of the behaviour of soils subjected to landslide, and it discusses landslides with rotational plastic movement, both monotype and composite landslides.

References

  1. Ambrosetti, P., Centamóre, E., Deiana, G., Dramis, F., & Pieruccini, U. (1981). Schema di evoluzione neotettonica dell’area umbro-marchigiana tra il Tronto ed il Metauro. Convegno geodinamica, Udine, Rend. Soc. Geol. It.Google Scholar
  2. Bertini, T., Cugusi, F., D’Elia, B., & Rossi-Doria, M. (1986). Lenti movimenti di versante nell’Abruzzo Adriatico: caratteri e criteri di stabilizzazione (Vol. 1, pp. 91–100). Atti del 16° Convegno Italiano di Geotecnica, Bologna.Google Scholar
  3. Bjerrum, L. (1967). Progressive failure in slopes of overconsolidated plastic clays. International Journal of Soil mechanics Engineering Division, ASCE, 1–49.Google Scholar
  4. Bromhead, E. N. (1986). The stability of slopes. Glasgow: Blachie & Son Ltd.Google Scholar
  5. Cancelli, A., & Pellegrini, M. (1987). Deep-seated gravitational deformations in the Northern Apennines, Italy. In Proceedings of 5th International Conference and Field Workshop on Landslides, Christchurch (pp. 171–178).Google Scholar
  6. Carloni, G. C., & Ceretti, A. (1967). Cenni geologici dei dintorni di Ancona. Com. Neog. Medit. Comm. Strat. IV Congr. Guida alle escursioni, 136–145, Bologna.Google Scholar
  7. Cello, G., & Coppola, L. (1979). Elementi neotettonici dell’area anconetana. Foglio 118 (Ancona pp.). C.N.R. Urog. Final Geodinamica. Sotto- prog. Neotettonica.Google Scholar
  8. Colalongo, M. L., Cremonini, G., Fabbri, P., & Ricci, Lucchi F. (1975). Studio sediment ologico-bio- stratigrafico di alcune sezioni pleistoceniche nei dintorni di Offagna (Ancona). Geologica Romana, 14, 125–140.Google Scholar
  9. Colalongo, M. L., Manni, T., & Ricci, Lucchi F. (1979). Sedimentazione ciclica nel Pliocene anconetano. Geologica Romana, 8, 71–92.Google Scholar
  10. Console, R., Peronaci, F., & Sonaglia, A. (1973). Relazione sui fenomeni sismici dell’anconetano (1972). Annali di Geof., 26.Google Scholar
  11. Crescenti, U., Coppola, L., & Tommassoni, D. (1974). Sul Mio-pliocene di Ancona: note stratigrafiche. Boll. Serv. Geol. d’Italia, n. 95.Google Scholar
  12. Di Maio, C. (1996a). Exposure of bentonite to salt solution: osmotic and mechanical effects. Géotechnique, 695–707.Google Scholar
  13. Di Maio, C. (1996b). The influence of pure fluid composition on the residual shear strength of some natural clayey soils. In VII International Symposium on Landslides, Trondheim (Vol. 2, pp. 1189–1194).Google Scholar
  14. Eigenbrod, K. D., Graham, J., & Burak, J. P. (1992). Influence of cycling porewater pressures and principal stress ratios on drained deformations in clay. Canadian Geotechnical Journal, 326–333.Google Scholar
  15. Fancelli, R., & Radrizzani, S. (1964). Foglio 118 Ancona. Note III. Carta Geologica d’Italia, 42, Roma.Google Scholar
  16. Fenelli, G. B., & Picarelli, L. (1990). The pore pressure field built up in a rapidly eroded soil mass. Canadian Geotechnical Journal, XXVII(3), 387–392.Google Scholar
  17. Fenelli, G. B., & Picarelli, L, & Silvestri, F. (1992). Deformation process of a hill shaken by the Irpinia earthquake in 1980. Atti del Conv. Italo-Francese «Stabilità dei Pendii in Zona Sismica», Bordighera.Google Scholar
  18. Gasparini, C., Ianaccone, G., & Scarpa, R. (1980). On the focal mechanism of Italian earthquakes. Rock Mechanics, 9, 85–91.Google Scholar
  19. Gasparini, C., & Praturlon, A. (1981). Modelli sismo-tettonici e geologia classica a confronto nell’Italia centrale. Relazione presentata al convegno annuale del progetto finalizzato geodinamica (Udine, 12–14 maggio 1981).Google Scholar
  20. Giese, P., Morelli, C., Nicolich, R., & Scarascia, S. (1979). Crust al structure of the Italian Peninsula. Pubb. Ist. Geof. Min. Università di Trieste.Google Scholar
  21. Gillet, S. (1969). La faune messinienne des environs d’Ancona. Giorn. Geol. s., 2(3), 69–100.Google Scholar
  22. Handin, J. (1969). Oil the Coulomb-Mohr failure criterion. Journal of Geophsyical Research, 74, 5343–5348.CrossRefGoogle Scholar
  23. Hoek, E., & Brown, C. T. (1980). Empirical strength criterion for rock masses. Journal of Engineering Division, ASCE, 1013–1035.Google Scholar
  24. Lambe, T. W., & Marr, W. A. (1979). Stress path method (2nd ed., pp. 724–738). JGED, ASCE.Google Scholar
  25. Lefebvre, G. (1987). Slope instability and valley formation in Canadian soft clay deposits. Canadian Geotechnical Journal, XXIV(3), 261–270.CrossRefGoogle Scholar
  26. Leroueil, S., Vaunat, J., Picarelli, L., Locat, J., Lee, H. J., & Faure, R. (1996). Geotechnical characterization of slope movements (Vol. 1, pp. 53–74). In International Symposium on Landslides, Trondheim.Google Scholar
  27. Matheson, D., & Thomson, S. (1973). Geological implications of valley rebound. Canadian Journal Earth Sciences, X, 961–978.Google Scholar
  28. Mogi, K. (1974). On the pressure dependence of strength of rocks and the Coulomb fracture criterion. Tectonophysics, 21, 273–285.CrossRefGoogle Scholar
  29. Moruzzi, G., & Follador, V. (1973). II Miocene superiore ed il Pliocette inferiore della zona dello scoglio del Trave (tra Ancona ed il Monte Conero) e loro inquadramento geologico regionale. Geol. Romana, 12, 129–149.Google Scholar
  30. Pasek, J. (1974). Gravitational block-type slope movements. In Proceedings of 2nd International Congress on I AEG, Sao Paulo, V-PC-1 (Vol. II).Google Scholar
  31. Picarelli, L. (1991). Resistenza e meccanismi di rottura nei pendii naturali (Vol. II, pp. II-7/II-61). Convegno su “Deformazioni in prossimità della rottura e resistenza dei terreni naturali e delle rocce”, Ravello.Google Scholar
  32. Picarelli, L. (1993). Structure and properties of clay shales involved in eartflows. In Atti dell’ International Symposium on The Geotechnical Engineering of Hard Soils-Soft Rocks, Atene (Vol. 3, pp. 2009–2019).Google Scholar
  33. Picarelli, L. (1999). Alcune considerazioni sui meccanismi di innesco e di propagazione delle colate in terreni sciolti e detritici. Convegno su Previsione e Prevenzione di Movimenti Franosi Rapidi, Trento (pp. 163–179).Google Scholar
  34. Picarelli, L., Di maio, C., Olivares, L., & Urcioli, G. (1998). Properties and behaviour of tectonized clay shales of Southern Apennines. In International Symposium on the Geotechnics of Hard Soils—Soft Rocks, Napoli (Vol. 3). (in corso di stampa).Google Scholar
  35. Picarelli, L., Di Maio, C., Olivares, L., & Urciuoli, G. (1998). Properties and behaviour of tectonized clay shales of Southern Apennines. In International Symposium on the Geotechnics of Hard Soils—Soft Rocks, Napoli (Vol. 3).Google Scholar
  36. Picarelli, L., Russo, C., & Mandolini, A. (1999). Long-term movements of an earthflow in tectonized clay shales. In Atti dell’ International Symposium om Slope Stability Engineering: Geotechnical and Geoenvironmental Aspects, Matsuyama, Japan (Vol. 2, pp. 1151–1158).Google Scholar
  37. Picarelli, L., Russo, C., & Urciuoli, G. (1995). Modelling earthflows based on experiences. In Atti dell’11ma European Conference on Soil Mechanics and Foundation Engineering, Copenhagen (Vol. 6, pp. 157–162).Google Scholar
  38. Riedel, W. (1929). Zur mechanic geologischer bruchercheinungen. Centralbl. f. Mineral Geol. u. Pal. (pp. 354–368).Google Scholar
  39. Russo, C. (1997). Caratteri evolutivi dei movimenti traslativi e loro interpretazione meccanica attraverso l’analisi numerica. Tesi di Dottorato, Università di Napoli Federico II.Google Scholar
  40. Selli, R. (1967). Cenni sul Neogene dell’avanfossa marchigiana. U.I.S.G. Comm. Strat. Comit. Neogene Medit., IV Congr. Guida alle escursioni, 126–135, Bologna 1967.Google Scholar
  41. Taylor, D. W. (1948). Fundamentals of soil mechanics. New York: Wiley.Google Scholar
  42. Terzaghi, K., & Peck, R. B. (1967). Soil mechanics in engineering practice (2nd ed.). New York: Wiley. (The first edition was published in 1948).Google Scholar
  43. Vaughan, P. R. (1994). Assumption, prediction and reality in geotechnical engineering. Geotechnique, 571–609.Google Scholar
  44. Vaunat, J., Leroueil, S., & Tavenas, F. (1992). Hazard and risk analysis of slope stability. In Canadian Symposium on Géotechnique and Natural Hazards, Vancouver (Vol. 1, pp. 397–404).Google Scholar
  45. Wood, D. M., Jendele, L., Chan, A. H. C., & Cooper, M. R. (1995). Slope failure by pore pressure recharge: numerical analysis. In Atti della 11ma European Conference on Soil Mechanics and Foundation Engineering, Copenhagen (Vol. 6, pp. 1–8).Google Scholar
  46. Yoshida, N. (1990). Time-dependent instability in fissured overconsolidated clays and mustones (PhD Thesis, University of Alberta, Edmonton).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of BasilicataPotenzaItaly

Personalised recommendations