Skip to main content

The Role of the Coefficient of Permeability K

  • Chapter
  • First Online:
  • 620 Accesses

Abstract

In this chapter it will be analysed the downward movement of water due to gravity, favoured by a permeability (K) more or less large, whereas the ascending, generally superficial, movement will be treated in the end for particular cases where even on jungle-like, intensely forested slopes (see Fig. 5.23 in Chap. 5) it is possible that there are plastic-rotational landslides that evolve in flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baligh, M. M. & Levadoux, J. N. (1980). Pore pressure dissipation after cone penetration. Research Report R. 80–11, Mit, Cambridge, MA.

    Google Scholar 

  • Baver, L. D. (1948). Soil Psysic (p. 398). Chapman and Hall Ltd.: Londres.

    Google Scholar 

  • Bishop, W. A. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1).

    Google Scholar 

  • Bromhead, E. N. (1986). The stability of slopes. Blackie & Son Ltd.

    Google Scholar 

  • Bromhead, E. N., Coppola, L., & Rendell, H. M. (1994). Geotechnical background to problems of conservation of the medieval centre of Tricarico, southern Italy. Quarterly Journal of Engineering Geology, 27, 293–307.

    Article  Google Scholar 

  • Cancelli, A., Pellegrini, M. (1987). Deep-seated gravitational deformations in the Northern Apennines, Italy. In Proceedings of the 5a International Conference and Field Workshop on Landslides (pp. 171–178). Christchurch.

    Google Scholar 

  • Castany, G. (1967). Traité pratique des eaux souterraines (duexième ed.). Paris: Dunod.

    Google Scholar 

  • Cello, G. & Coppola, L. (1984). Assetto Geologico-Strutturale dell’Area Anconetana e sua Evoluzione Plio-Quaternaria. Bollettino della Società Geologica Italiana, 103, 97–109, 6 ff., 2 tavv.

    Google Scholar 

  • Cerere, V., Lembo Fazio, A. (1986). Condizioni di sollecitazione indotte dalla presenza di una placca lapidea su un substrato deformabile. In Atti del XVI Convegno Italiano di Geotecnica (Vol. I, pp. 191–202). Bologna.

    Google Scholar 

  • Combeau, A. & Monnier, G. (1961). Sols africains, 6(1), 4–32.

    Google Scholar 

  • Coppola, L. (1993). Evoluzione tettonica e meccanismi deformativi della media Valle del Basento, Bollettino della Società Geologica Italiana, 112, 159–179, 20 ff., 1 tav. f.t.

    Google Scholar 

  • Coulomb, C. A. (1773). Essai sur une Application de Regles de Maximis et Minimis a Quelques Problemes de Statique Relatifs a l’Architecture. In Mémoires de Mathématique & de Physique, présentés à l’Académie Royale des Sciences par divers Savans, & lus* dans ses Assemblées (Vol. 7).

    Google Scholar 

  • Delpont, G., Deramont, J., Guchereau, J. Y., Joseph, J., Majeste-Menjoulas, C. L., Soula, J. C., et al. (1973). Ruptures extensives et cisaillantes dans des series rythmiques sédimentaires (Montagne Noire et Pyrénées). Revue de Géographie Physique et de Géologie Dynamique, France, 15(5), 567–574.

    Google Scholar 

  • Di Maio, C. (1996a). Exposure of bentonite to salt solution: Osmotic and mechanical effects. Géotechnique, 695–707.

    Google Scholar 

  • Di Maio, C. (1996b). The influence of pore fluid composition on the residual shear strength of some natural clayey soils. In Atti del VII International Symposium on Landslides (Vol. 2, pp. 1189–1194). Trondheim.

    Google Scholar 

  • Dupuit, J (1863) Etudes théoriques et pratiques sur le movement des eaux dans le canaux découverts et à travers les terrains perméables, 2e édit. Paris: Dunod.

    Google Scholar 

  • Eigenbrod, K. D., Graham, J., Burak, J. P. (1992). Influence of cycling porewater pressures and principal stress ratios on drained deformations in clay. Canadian Geotechnical Journal, 326–333.

    Google Scholar 

  • Fellenius, W. (1992). Erdstatisce Berechnungen. Berlin: W. Ernst.

    Google Scholar 

  • Fenelli, G. B., Picarelli, L., Silvestri, F. (1992). Deformation process of a hill shaken by the Irpinia earthquake in 1980. In Atti del Conv. Italo-FranceseStabilità dei Pendii in Zona Sismica”. Bordighera.

    Google Scholar 

  • Fitz Patrick, E. A. (1988). Soil horizon designation and classification. Technical Paper 17 Isric, Wageningeu.

    Google Scholar 

  • Janbu, N. (1973). Slope stability computations. The Embankment dam engineering: Casagrande Volume (pp. 47–86). Wiley.

    Google Scholar 

  • Lambe, T. W. & Marr, W. A. (1979). Stress path method (2nd ed., 724–738) JGED, ASCE, June 1979.

    Google Scholar 

  • Lefebvre, G. (1987). Slope instability and valley formation in Canadian soft clay deposits. Canadian Geotechnical Journal, XXIV(3), 261–270.

    Google Scholar 

  • Matheson, D. S., & Thomson, S. (1973). Geological implications of valley rebound. Canadian Journal Earth Sciences, X, 961–978.

    Google Scholar 

  • Morgenstern, N. R., & Price, V. E. (1965). The analysis of the stability of general slip surfaces. Geotechnique, 15, 79–93.

    Article  Google Scholar 

  • Pasek, J. (1974). Gravitational block-type slope movements. In Proceedings of the 2th International Congress (Vol. II, th. V-PC 1). Sao Paulo: IAEG.

    Google Scholar 

  • Picarelli, L. (1993). Structure and properties of clay shales involved in earthflows. In Atti dell’International SymposiumThe Geotechnical Engineering of Hard Soils-Soft Rocks” (Vol. 3, pp. 2009–2019). Atene.

    Google Scholar 

  • Picarelli, L. (1999). Meccanismi di Deformazione e rottura dei pendii. In Argomenti di Ingegneria Geotecnica (Vol. 14). Hevelius Edizioni.

    Google Scholar 

  • Sarma, S. H. (1979). Stability analysis of embankments and slopes. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, 105(GT 12).

    Google Scholar 

  • Skempton, A. W. (1948). The ϕ = 0 analysis of stability and its theoretical basis. In 2nd ICSM. Rotterdam.

    Google Scholar 

  • Skempton, A. W., & Petley, D. J. (1967). The strength alone discontinuities in stiff clays. In Atti della Geotechnical Conference (Vol. 2, pp. 29–46). Oslo.

    Google Scholar 

  • Taylor, D. W. (1948). Fundamentals of soil mechanics. New York: Wiley.

    Google Scholar 

  • Terzaghi, K., & Peck, R. B. (1967). Soil mechanics in engineering practice (2nd ed.). New York: Wiley. The first edition was published in 1948.

    Google Scholar 

  • Tison, L. J. (1953). Cours d’hydraulique, 2e parties (pp. 265–430).

    Google Scholar 

  • Torstensson, B. A. (1975). Pore pressure sounding instrument. In Proceedings of the ASCE Specialty Conference, Measurement of Soil Properties. Raleigh: North Carolina State University.

    Google Scholar 

  • Torstensson, B. A., & Petsonk, A. (1985). Bat water monitoring system. In ASTM Symposium of Field Methods for Ground Water Contamination Studies and their Standardisation. Cocoa Beach, FL, USA, February 2–7, 1985.

    Google Scholar 

  • Varnes, D. J. (1978). Slope movement types and processes. In R. L. Schuster & R. J. Krizek (Eds.), Landslides: Analysis and control. Washington, DC.

    Google Scholar 

  • Vigneron, J., & Desaunettes, J. R. (1960). VII congrès international de science du sol (Vols. 1, I, 5, pp. 114–121). Hadison.

    Google Scholar 

  • Yoshida, N. (1990). Time-dependent instability in fissured overconsolidated clays and mudstones (Ph.D. thesis). University of Alberta, Edmonton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Coppola .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coppola, L. (2018). The Role of the Coefficient of Permeability K. In: Hydrogeological Instability in Cohesive Soils. Springer, Cham. https://doi.org/10.1007/978-3-319-74331-8_6

Download citation

Publish with us

Policies and ethics