Electricity Markets and Intelligent Agents Part II: Agent Architectures and Capabilities

Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 144)

Abstract

Agent technology is a relatively new and rapidly expanding area of research and development. The major motivations for the increasing interest in intelligent agents and multi-agent systems include the ability to provide solutions to problems that can naturally be regarded as a society of autonomous interacting components, to solve problems that are too large for a centralized agent to solve, and to provide solutions in situations where expertise is distributed. Electricity markets (EMs) are complex distributed systems, typically involving a variety of transactive techniques (e.g., centralized and bilateral market clearing). The agent-based approach is an ideal fit to the naturally distributed domain of EMs. Accordingly, a number of agent-based models and systems for EMs have been proposed in the technical literature. These models and systems exhibit fairly different features and make use of a diverse range of concepts. At present, there seems to be no agreed framework to analyze and compare disparate research efforts. Chapter  2 and this companion chapter claim that such a framework can be very important and instructive, helping to understand the interrelationships of disparate research efforts. Accordingly, Chap.  2 (Part I) and this chapter (Part II) introduce a generic framework for agent-based simulation of EMs. The complete framework includes three groups (or categories) of dimensions: market architecture, market structure and software agents. The first two groups were the subject of Chap.  2. This chapter discusses in considerable detail the last group of dimensions, labeled “software agents”, and composed by two distinct yet interrelated dimensions: agent architectures and agent capabilities.

Notes

Acknowledgements

The work described in this chapter was performed under the project MAN-REM: Multi-agent Negotiation and Risk Management in Electricity Markets (FCOMP-01-0124-FEDER-020397), supported by FEDER Funds, through the program COMPETE (“Programa Operacional Temático Factores de Competividade”), and also National Funds, through FCT (“Fundação para a Ciência e a Tecnologia”). The authors also wish to acknowledge the valuable comments and suggestions made by Hannele Holttinen, from the VTT Technical Research Centre of Finland.

References

  1. 1.
    Macal, C., North, M.: Tutorial on agent-based modelling and simulation. J. Simul. 4, 151–162 (2010)CrossRefGoogle Scholar
  2. 2.
    Wooldridge, M.: An Introduction to Multi-agent Systems. Wiley, Chichester (2009)Google Scholar
  3. 3.
    Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and development. Auton. Agents Multi Agent Syst. 1, 7–38 (1998)CrossRefGoogle Scholar
  4. 4.
    Pĕchouc̆ek, M., Mar̆ík, V.: Industrial deployment of multi-agent technologies: review and selected case studies. Auton. Agents Multi Agent Syst. 17, 397–431 (2008)CrossRefGoogle Scholar
  5. 5.
    Stoft, S.: Power System Economics: Designing Markets for Electricity. IEEE Press and Wiley Interscience, New York (2002)CrossRefGoogle Scholar
  6. 6.
    Wood, A., Wollenberg, B., Sheblé, G.: Power Generation, Operation, and Control. Wiley, Chichester (2014)Google Scholar
  7. 7.
    Kirschen, D., Strbac, G.: Fundamentals of Power System Economics. Wiley, Chichester (2004)CrossRefGoogle Scholar
  8. 8.
    Ventosa, M., Baíllo, A., Ramos, A., Rivier, M.: Electricity market modeling trends. Energy Policy 33(7), 897–913 (2005)CrossRefGoogle Scholar
  9. 9.
    Zhou, Z.Z., Chan, W.K., Chow, J.H.: Agent-based simulation of electricity markets: a survey of tools. Artif. Intell. Rev. 28, 305–342 (2007)CrossRefGoogle Scholar
  10. 10.
    Harp, S.A., Brignone, S., Wollenberg, B.F., Samad, T.: SEPIA: a simulator for the electric power industry agents. IEEE Control Syst. Mag. 20(4), 53–69 (2000)CrossRefGoogle Scholar
  11. 11.
    Koritarov, V.: Real-world market representation with agents: modeling the electricity market as a complex adaptive system with an agent-based approach. IEEE Power Energy Mag. 2(4), 39–46 (2004)CrossRefGoogle Scholar
  12. 12.
    Batten, D., George Grozev, G.: NEMSIM: finding ways to reduce greenhouse gas emissions using multi-agent electricity modelling. In: Perez, P., Batten, D. (eds.) Complex Science for a Complex World Exploring Human Ecosystems with Agents, pp. 227–252. Australian National University Press, Canberra (2006)Google Scholar
  13. 13.
    Sun, J., Tesfatsion, L.: Dynamic testing of wholesale power market designs: an open-source agent-based framework. Comput. Econ. 30, 291–327 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Sensfuß, F.: Assessment of the impact of renewable electricity generation on the German electricity sector: an agent-based simulation approach. Ph.D. Dissertation, Karlsruhe University (2007)Google Scholar
  15. 15.
    Vale, Z., Pinto, T., Praça, I., Morais, H.: MASCEM - electricity markets simulation with strategically acting players. IEEE Intell. Syst. 26(2), 9–17 (2011)CrossRefGoogle Scholar
  16. 16.
    Sensfuß, F., Genoese, M., Ragwitz, M., Möst, D.: Agent-based simulation of electricity markets—a literature review. Energy Stud. Rev. 15(2), 1–29 (2007)Google Scholar
  17. 17.
    Weidlich, A., Veit, D.: A critical survey of agent-based wholesale electricity market models. Energy Econ. 30, 1728–1759 (2008)CrossRefGoogle Scholar
  18. 18.
    Weidlich, A.: Engineering Interrelated Electricity Markets. Physica-Verlag, Heidelberg (2008)Google Scholar
  19. 19.
    Guerci, E., Rastegar, M., Cincotti, S.: Agent-based modeling and simulation of competitive wholesale electricity markets. In: Rebennack, S., Pardalos, P., Pereira, M., Iliadis, N. (eds.) Handbook of Power Systems II, pp. 241–286. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Franklin, S., Graesser, A.: Is it an agent, or just a program?: a taxonomy for autonomous agents. In: Müller, J., Wooldridge, M., Jennings, N. (eds.) Intelligent Agents III: Agent Theories, Architectures, and Languages, pp. 21–35. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Wooldridge, J., Jennings, N.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)CrossRefGoogle Scholar
  22. 22.
    Kaelbling, P.: A situated-automata approach to the design of embedded agents. SIGART Bull. 2(4), 85–88 (1991)CrossRefGoogle Scholar
  23. 23.
    Maes, P.: The agent network architecture (ANA). SIGART Bull. 2(4), 115–120 (1991)CrossRefGoogle Scholar
  24. 24.
    Shehory, O., Sturm, A.: A brief introduction to agents. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software Engineering, pp. 3–11. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Inc., New Jersey (2010)MATHGoogle Scholar
  26. 26.
    Russell, S.: Rationality and intelligence. Artif. Intell. 94, 57–77 (1997)CrossRefMATHGoogle Scholar
  27. 27.
    Russell, S.: Rationality and intelligence. In: Elio, R. (ed.) Common Sense, Reasoning, and Rationality, pp. 37–57. Oxford University Press, New York (2002)CrossRefGoogle Scholar
  28. 28.
    Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)Google Scholar
  29. 29.
    Sen, S., Weiss, G.: Learning in multi-agent systems. In: Weiss, G. (ed.) Multi-Agent Systems: A Modern Approach to Distributed Artificial Intelligence, pp. 259–298. MIT Press, USA (1999)Google Scholar
  30. 30.
    Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)MATHGoogle Scholar
  31. 31.
    Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE Intell. Syst. 24(2), 8–12 (2009)CrossRefGoogle Scholar
  32. 32.
    Müller, J.: The Design of Intelligent Agents: A Layered Approach. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  33. 33.
    Müller, J.: Architectures and applications of intelligent agents: a survey. Knowl. Eng. Rev. 13(4), 353–380 (1998)CrossRefGoogle Scholar
  34. 34.
    Bratman, M., Israel, D., Pollack, M.: Plans and resource-bounded practical reasoning. Comput. Intell. 4, 349–355 (1988)CrossRefGoogle Scholar
  35. 35.
    Georgeff, M., Ingrand, F.: Decision-making in an embedded reasoning system. In: Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), Detroit, Michigan, pp. 972–978 (1989)Google Scholar
  36. 36.
    Ferguson, I.: Touring machines: autonomous agents with attitudes. IEEE Comput. 25(5), 51–55 (1992)CrossRefGoogle Scholar
  37. 37.
    Sridharan, N.: 1986 workshop on distributed AI. AI Mag. 8(3), 75–85 (1987)Google Scholar
  38. 38.
    Huhns, M., Singh, M.: Agents and multiagent systems: themes, approaches, and challenges. In: Huhns, M., Singh, M. (eds.) Readings in Agents, pp. 1–23. Morgan Kaufmann, San Francisco (1998)Google Scholar
  39. 39.
    Scerri, P., Pynadath, D., Tambe, M.: Adjustable autonomy for the real world. In: Hexmoor, H., Castelfranci, C., Falcone, R. (eds.) Agent Autonomy, pp. 211–241. Springer Science+Business Media, New York (2003)CrossRefGoogle Scholar
  40. 40.
    Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: the robot that won the DARPA grand challenge. In: Buehler, M., Iagnemma, K., Singh, S. (eds.) The 2005 DARPA Grand Challenge, pp. 1–43. Springer, Berlin (2007)Google Scholar
  41. 41.
    Gruber, T.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)CrossRefGoogle Scholar
  42. 42.
    Noy, N., McGuinness, D.: Ontology development 101: a guide to creating your first ontology. Technical report KSL-01-05, Knowledge Systems Laboratory, Stanford University, USA (2001)Google Scholar
  43. 43.
    Bechhofer, S., van Harmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P., Stein, L.: OWL Web Ontology Language Reference (2004). http://www.w3.org/TR/2004/REC-owl-ref-20040210/. Accessed 12 Jan 2017
  44. 44.
    W3C Recommendation: The Extensible Markup Language (XML) 1.0 (2008). http://www.w3.org/TR/REC-xml/. Accessed 12 Jan 2017
  45. 45.
    Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML – a language and protocol for knowledge and information exchange. In: Proceedings of the 13th International Distributed Artificial Intelligence Workshop, pp. 93–103. AAAI Press, Menlo Park, California (1994)Google Scholar
  46. 46.
    Austin, J.: How to Do Things With Words. Oxford University Press, London (1962)Google Scholar
  47. 47.
    Searle, J.: Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press, London (1969)CrossRefGoogle Scholar
  48. 48.
    Jeon, H., Petrie, C., Cutkosky, M.: JATLite: a java agent infrastructure with message routing. IEEE Internet Comput. 4(2), 87–96 (2000)CrossRefGoogle Scholar
  49. 49.
    FIPA: ACL Message Structure Specification. Foundation for Intelligent Physical Agents, Document Number SC00061G (2002). http://www.fipa.org/specs/fipa00061/. Accessed 12 Jan 2017
  50. 50.
    FIPA: Communicative Act Library Specification. Foundation for Intelligent Physical Agents, Document Number SC00037J (2002). http://www.fipa.org/specs/fipa00037/. Accessed 12 Jan 2017
  51. 51.
    Cohen, P., Levesque, H.: Rational interaction as the basis for communication. In: Cohen, P., Morgan, J., Pollack, M. (eds.) Intentions in Communication, pp. 221–256. The MIT Press, Cambridge (1990)Google Scholar
  52. 52.
    Bretier, P., Sadek, D.: A rational agent as the kernel of a cooperative spoken dialogue system: implementing a logical theory of interaction. In: Müller, J., Wooldridge, M., Jennings, N. (eds.) Intelligent Agents III (LNAI 1193), pp. 189–203. Springer, Heidelberg (1997)Google Scholar
  53. 53.
    Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-agent Systems with JADE. Wiley, Chichester (2007)CrossRefGoogle Scholar
  54. 54.
    Bond, A., Gasser, L.: An analysis of problems and research in DAI. In: Bond, A., Gasser, L. (eds.) Readings in Distributed Artificial Intelligence, pp. 3–35. Morgan Kaufmann Publishers, San Mateo (1988)Google Scholar
  55. 55.
    Bobrow, D.: Dimensions of interaction. AI Mag. 12(3), 64–80 (1991)Google Scholar
  56. 56.
    Lopes, F., Wooldridge, M., Novais, A.Q.: Negotiation among autonomous computational agents: principles, analysis and challenges. Artif. Intell. Rev. 29, 1–44 (2008)CrossRefGoogle Scholar
  57. 57.
    Weiss, G. (ed.): Multiagent Systems. The MIT Press, Cambridge (2013)Google Scholar
  58. 58.
    Lopes, F., Coelho, H. (eds.): Negotiation and Argumentation in Multi-agent Systems. Bentham Science, The Netherlands (2014)Google Scholar
  59. 59.
    Poole, D., Mackworth, A.: Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  60. 60.
    Goodwin, R.: Formalizing properties of agents. Technical report CMUCS93159, School of Computer Science, Carnegie-Mellon University, Pittsburgh (1993)Google Scholar
  61. 61.
    Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: a BDI-agent system combining middleware and reasoning. In: Unland, R., Klusch, M., Calisti, M. (eds.) Software Agent-Based Applications, Platforms and Development Kits, pp. 143–168. Birkhäuser Verlag, part of Springer Science+Business Media, Basel, Switzerland (2005)Google Scholar
  62. 62.
    Vidigal, D., Lopes, F., Pronto, A., Santana, J.: Agent-based simulation of wholesale energy markets: a case study on renewable generation. In: Spies, M., Wagner, R., Tjoa, A. (eds.) 26th Database and Expert Systems Applications (DEXA 2015), pp. 81–85. IEEE (2015)Google Scholar
  63. 63.
    Algarvio, H., Couto, A., Lopes, F., Estanqueiro, A., Santana, J.: Multi-agent energy markets with high levels of renewable generation: a case-study on forecast uncertainty and market closing time. In: Omatu, S. et al. (eds.) 13th International Conference on Distributed Computing and Artificial Intelligence, pp. 339–347. Springer International Publishing (2016)Google Scholar
  64. 64.
    Algarvio, H., Couto, A., Lopes, F., Estanqueiro, A., Holttinen, H., Santana, J.: Agent-based simulation of day-ahead energy markets: impact of forecast uncertainty and market closing time on energy prices. In: Tjoa, A., Vale, Z., Wagner, R. (eds.) 27th Database and Expert Systems Applications (DEXA 2016), pp. 166–70. IEEE (2016)Google Scholar
  65. 65.
    Lopes, F., Rodrigues, T., Sousa, J.: Negotiating bilateral contracts in a multi-agent electricity market: a case study. In: Hameurlain, A., Tjoa, A., Wagner, R. (eds.) 23rd Database and Expert Systems Applications (DEXA 2012), pp. 326–330. IEEE (2012)Google Scholar
  66. 66.
    Algarvio, H., Lopes, F., Santana, J.: Bilateral contracting in multi-agent energy markets: forward contracts and risk management. In: Bajo, J. et al. (eds.) Highlights of Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection (PAAMS 2015), pp. 260–269. Springer International Publishing (2015)Google Scholar
  67. 67.
    Sousa, F., Lopes, F., Santana, J.: Contracts for difference and risk management in multi-agent energy markets. In: Demazeau, Y., Decker, K., Pérez, J., De la Prieta, F. (eds.) Advances in Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection (PAAMS 2015), pp. 339–347. Springer International Publishing (2015)Google Scholar
  68. 68.
    Sousa, F., Lopes, F., Santana, J.: Multi-agent electricity markets: a case study on contracts for difference. In: Spies, M., Wagner, R., Tjoa, A. (eds.) 26th Database and Expert Systems Applications (DEXA 2015), pp. 88–90. IEEE (2015)Google Scholar
  69. 69.
    Lopes, F., Coelho, H.: Strategic and tactical behaviour in automated negotiation. Int. J. Artif. Intell. 4(S10), 35–63 (2010)Google Scholar
  70. 70.
    Osborne, M., Rubinstein, A.: Bargaining and Markets. Academic Press, London (1990)MATHGoogle Scholar
  71. 71.
    Algarvio, H., Lopes, F., Santana, J.: Multi-agent retail energy markets: bilateral contracting and coalitions of end-use customers. In: 12th International Conference on the European Energy Market (EEM 2015), pp. 1–5. IEEE (2015)Google Scholar
  72. 72.
    Algarvio, H., Lopes, F., Santana, J.: Multi-agent retail energy markets: contract negotiation, customer coalitions and a real-world case study. In: Demazeau, I., Takayuki, I., Javier, B., Escalona, M. (eds.) Advances in Practical Applications of Scalable Multi-agent Systems (The PAAMS Collection), LNAI 9662, pp. 13–23. Springer International Publishing (2016)Google Scholar
  73. 73.
    Bratman, M.: Intentions, Plans, and Practical Reason. Harvard University Press, Cambridge (1987)Google Scholar
  74. 74.
    Haddadi, A., Sundermeyer, K.: Belief-desire-intention agent architectures. In: O’Hare, G., Jennings, N. (eds.) Foundations of Distributed Artificial Intelligence, pp. 169–185. Wiley, New York (1996)Google Scholar
  75. 75.
    D’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS architecture: a specification of the distributed multi-agent reasoning system. Auton. Agents Multi Agent Syst. 9, 5–53 (2004)CrossRefGoogle Scholar
  76. 76.
    Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-agents for agile goal-oriented business processes. In: Berger, M., Burg, B., Nishiyama, S. (eds.) International Conference on Autonomus Agents and Multi-agent Systems (Industry and Applications Track) IFAAMAS, pp. 37–44 (2008)Google Scholar
  77. 77.
    Shoham, Y.: Agent-oriented programming. Artif. Intell. 60, 51–92 (1993)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID Architecture. In: André, E., Sen, S., Frasson, C., Müller, J. (eds.) International Conference on Autonomous Agents (AGENTS-01), pp. 9–16. ACM Press, New York (2001)Google Scholar
  79. 79.
    Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID architecture. Cogn. Sci. Q. 2(3–4), 428–447 (2002)Google Scholar
  80. 80.
    Schut, M., Wooldridge, M., Parsons, S.: On partially observable MDPs and BDI models. In: dInverno, M., Luck, M., Fisher, M., Preist, C. (eds.) Foundations and Applications of Multi-Agent Systems (UKMAS Workshops 1996-2000, Selected Papers), LNAI 2403, pp. 243–259. Springer, Berlin (2002)Google Scholar
  81. 81.
    Simari, G., Parsons, S.: Markov Decision Processes and the Belief-Desire-Intention Model: Bridging the Gap for Autonomous Agents. Springer, Heidelberg (2011)CrossRefMATHGoogle Scholar
  82. 82.
    Nair, R., Tambe, M.: Hybrid BDI-POMDP framework for multiagent teaming. J. Artif. Intell. Res. 23, 367–420 (2005)MATHGoogle Scholar
  83. 83.
    Dimuro, G., Costa, A., Gonçalves, L., Pereira, D.: Recognizing and learning models of social exchange strategies for the regulation of social interactions in open agent societies. J. Braz. Comput. Soc. 17, 143–161 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.LNEG–National Laboratory of Energy and GeologyLisbonPortugal
  2. 2.University of LisbonLisbonPortugal

Personalised recommendations