Familial Adenomatous Polyposis or APC-Associated Polyposis

Chapter

Abstract

Familial adenomatous polyposis (FAP) or APC-associated polyposis is an autosomal dominant inherited syndrome caused by APC germline mutations. Most patients will develop hundreds of adenomatous polyps and thereby have a 100% risk of developing CRC during lifetime. Depending on the location of the mutation in the APC gene, a milder phenotype with usually less than 100 adenomas is also possible, called attenuated FAP (AFAP). Patients with AFAP also have a high risk of developing mostly benign, extracolonic manifestations. This chapter will discuss the genetic and clinical aspects, detection, extracolonic manifestations, and tumour characteristics of this polyposis syndrome.

Keywords

Familial adenomatous polyposis APC-associated polyposis APC Polyposis AFAP 

References

  1. 1.
    Burn J, Chapman P, Delhanty J, Wood C, Lalloo F, Cachon-Gonzalez MB, et al. The UK Northern region genetic register for familial adenomatous polyposis coli: use of age of onset, congenital hypertrophy of the retinal pigment epithelium, and DNA markers in risk calculations. J Med Genet. 1991;28(5):289–96.CrossRefGoogle Scholar
  2. 2.
    Bulow S, Faurschou NT, Bulow C, Bisgaard ML, Karlsen L, Moesgaard F. The incidence rate of familial adenomatous polyposis. Results from the Danish Polyposis Register. Int J Color Dis. 1996;11(2):88–91.CrossRefGoogle Scholar
  3. 3.
    Bjork J, Akerbrant H, Iselius L, Alm T, Hultcrantz R. Epidemiology of familial adenomatous polyposis in Sweden: changes over time and differences in phenotype between males and females. Scand J Gastroenterol. 1999;34(12):1230–5.CrossRefGoogle Scholar
  4. 4.
    Bussey HJ. Familial polyposis coli. Pathol Annu. 1979;14(Pt 1):61–81.PubMedGoogle Scholar
  5. 5.
    Jarvinen HJ. Epidemiology of familial adenomatous polyposis in Finland: impact of family screening on the colorectal cancer rate and survival. Gut. 1992;33(3):357–60.CrossRefGoogle Scholar
  6. 6.
    Bisgaard ML, Fenger K, Bulow S, Niebuhr E, Mohr J. Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat. 1994;3(2):121–5.CrossRefGoogle Scholar
  7. 7.
    Grover S, Kastrinos F, Steyerberg EW, Cook EF, Dewanwala A, Burbidge LA, et al. Prevalence and phenotypes of APC and MUTYH mutations in patients with multiple colorectal adenomas. JAMA. 2012;308(5):485–92.  https://doi.org/10.1001/jama.2012.8780.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller K, et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 2016.  https://doi.org/10.1001/jamaoncol.2016.5194.
  9. 9.
    Lipton L, Tomlinson I. The genetics of FAP and FAP-like syndromes. Familial Cancer. 2006;5(3):221–6.CrossRefGoogle Scholar
  10. 10.
    Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst. 2017;109(8).  https://doi.org/10.1093/jnci/djw332.
  11. 11.
    Nielsen M, Bik E, Hes FJ, Breuning MH, Vasen HF, Bakker E, et al. Genotype-phenotype correlations in 19 Dutch cases with APC gene deletions and a literature review. Eur J Hum Genet: EJHG. 2007;15(10):1034–42.  https://doi.org/10.1038/sj.ejhg.5201871.CrossRefPubMedGoogle Scholar
  12. 12.
    Sieber OM, Lamlum H, Crabtree MD, Rowan AJ, Barclay E, Lipton L, et al. Whole-gene APC deletions cause classical familial adenomatous polyposis, but not attenuated polyposis or "multiple" colorectal adenomas. Proc Natl Acad Sci U S A. 2002;99(5):2954–8.CrossRefGoogle Scholar
  13. 13.
    Aretz S, Stienen D, Uhlhaas S, Pagenstecher C, Mangold E, Caspari R, et al. Large submicroscopic genomic APC deletions are a common cause of typical familial adenomatous polyposis. J Med Genet. 2005;42(2):185–92.  https://doi.org/10.1136/jmg.2004.022822.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Aretz S, Uhlhaas S, Caspari R, Mangold E, Pagenstecher C, Propping P, et al. Frequency and parental origin of de novo APC mutations in familial adenomatous polyposis. Eur J Hum Genet: EJHG. 2004;12(1):52–8.  https://doi.org/10.1038/sj.ejhg.5201088.CrossRefPubMedGoogle Scholar
  15. 15.
    Hes FJ, Nielsen M, Bik EC, Konvalinka D, Wijnen JT, Bakker E, et al. Somatic APC mosaicism: an underestimated cause of polyposis coli. Gut. 2008;57(1):71–6.  https://doi.org/10.1136/gut.2006.117796.CrossRefPubMedGoogle Scholar
  16. 16.
    Aretz S, Stienen D, Friedrichs N, Stemmler S, Uhlhaas S, Rahner N, et al. Somatic APC mosaicism: a frequent cause of familial adenomatous polyposis (FAP). Hum Mutat. 2007;28(10):985–92.  https://doi.org/10.1002/humu.20549.CrossRefPubMedGoogle Scholar
  17. 17.
    Jansen AM, Crobach S, Geurts-Giele WR, van den Akker BE, Garcia MV, Ruano D, et al. Distinct patterns of somatic mosaicism in the APC gene in neoplasms from patients with unexplained adenomatous polyposis. Gastroenterology. 2017;152(3):546–9 e3.  https://doi.org/10.1053/j.gastro.2016.10.040.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Spier I, Drichel D, Kerick M, Kirfel J, Horpaopan S, Laner A, et al. Low-level APC mutational mosaicism is the underlying cause in a substantial fraction of unexplained colorectal adenomatous polyposis cases. J Med Genet. 2016;53(3):172–9.  https://doi.org/10.1136/jmedgenet-2015-103468.CrossRefGoogle Scholar
  19. 19.
    Spier I, Horpaopan S, Vogt S, Uhlhaas S, Morak M, Stienen D, et al. Deep intronic APC mutations explain a substantial proportion of patients with familial or early-onset adenomatous polyposis. Hum Mutat. 2012;33(7):1045–50.  https://doi.org/10.1002/humu.22082.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Azzopardi D, Dallosso AR, Eliason K, Hendrickson BC, Jones N, Rawstorne E, et al. Multiple rare nonsynonymous variants in the adenomatous polyposis coli gene predispose to colorectal adenomas. Cancer Res. 2008;68(2):358–63.CrossRefGoogle Scholar
  21. 21.
    Nieuwenhuis MH, Vasen HF. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol. 2007;61(2):153–61.CrossRefGoogle Scholar
  22. 22.
    Miyoshi Y, Nagase H, Ando H, Horii A, Ichii S, Nakatsuru S, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet. 1992;1(4):229–33.CrossRefGoogle Scholar
  23. 23.
    Bussey HJR. Familial polyposis coli: family studies, histopathology, differential diagnosis, and results of treatment. Baltimore: Johns Hopkins University Press; 1975.Google Scholar
  24. 24.
    Atkin WS, Morson BC, Cuzick J. Long-term risk of colorectal cancer after excision of rectosigmoid adenomas. N Engl J Med. 1992;326(10):658–62.CrossRefGoogle Scholar
  25. 25.
    Ponder BA. Cancer genetics. Nature. 2001;411(6835):336–41.CrossRefGoogle Scholar
  26. 26.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343(2):78–85.CrossRefGoogle Scholar
  27. 27.
    Bulow S, Bjork J, Christensen IJ, Fausa O, Jarvinen H, Moesgaard F, et al. Duodenal adenomatosis in familial adenomatous polyposis. Gut. 2004;53(3):381–6.CrossRefGoogle Scholar
  28. 28.
    Campos FG, Sulbaran M, Safatle-Ribeiro AV, Martinez CAR. Duodenal adenoma surveillance in patients with familial adenomatous polyposis. World J Gastrointest Endosc. 2015;7(10):950–9.  https://doi.org/10.4253/wjge.v7.i10.950.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hashimoto T, Ogawa R, Matsubara A, Taniguchi H, Sugano K, Ushiama M, et al. Familial adenomatous polyposis-associated and sporadic pyloric gland adenomas of the upper gastrointestinal tract share common genetic features. Histopathology. 2015;67(5):689–98.  https://doi.org/10.1111/his.12705.CrossRefPubMedGoogle Scholar
  30. 30.
    Bjork J, Akerbrant H, Iselius L, Bergman A, Engwall Y, Wahlstrom J, et al. Periampullary adenomas and adenocarcinomas in familial adenomatous polyposis: cumulative risks and APC gene mutations. Gastroenterology. 2001;121(5):1127–35.CrossRefGoogle Scholar
  31. 31.
    Ghorbanoghli Z, Bastiaansen BA, Langers AM, Nagengast FM, Poley JW, Hardwick JC, et al. Extracolonic cancer risk in Dutch patients with APC (adenomatous polyposis coli)-associated polyposis. J Med Genet. 2017.  https://doi.org/10.1136/jmedgenet-2017-104545.
  32. 32.
    Latchford AR, Neale KF, Spigelman AD, Phillips RK, Clark SK. Features of duodenal cancer in patients with familial adenomatous polyposis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2009;7(6):659–63.  https://doi.org/10.1016/j.cgh.2009.02.028.CrossRefGoogle Scholar
  33. 33.
    Groves CJ, Saunders BP, Spigelman AD, Phillips RK. Duodenal cancer in patients with familial adenomatous polyposis (FAP): results of a 10 year prospective study. Gut. 2002;50(5):636–41.CrossRefGoogle Scholar
  34. 34.
    Offerhaus GJ, Giardiello FM, Krush AJ, Booker SV, Tersmette AC, Kelley NC, et al. The risk of upper gastrointestinal cancer in familial adenomatous polyposis. Gastroenterology. 1992;102(6):1980–2.CrossRefGoogle Scholar
  35. 35.
    Giardiello FM, Krush AJ, Petersen GM, Booker SV, Kerr M, Tong LL, et al. Phenotypic variability of familial adenomatous polyposis in 11 unrelated families with identical APC gene mutation. Gastroenterology. 1994;106(6):1542–7.CrossRefGoogle Scholar
  36. 36.
    Nugent KP, Phillips RK, Hodgson SV, Cottrell S, Smith-Ravin J, Pack K, et al. Phenotypic expression in familial adenomatous polyposis: partial prediction by mutation analysis. Gut. 1994;35(11):1622–3.CrossRefGoogle Scholar
  37. 37.
    Rozen P, Samuel Z, Shomrat R, Legum C. Notable intrafamilial phenotypic variability in a kindred with familial adenomatous polyposis and an APC mutation in exon 9. Gut. 1999;45(6):829–33.CrossRefGoogle Scholar
  38. 38.
    Ghorbanoghli Z, Nieuwenhuis MH, Houwing-Duistermaat JJ, Jagmohan-Changur S, Hes FJ, Tops CM, et al. Colorectal cancer risk variants at 8q23.3 and 11q23.1 are associated with disease phenotype in APC mutation carriers. Familial Cancer. 2016;15(4):563–70.  https://doi.org/10.1007/s10689-016-9877-5.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Talseth-Palmer BA, Wijnen JT, Andreassen EK, Barker D, Jagmohan-Changur S, Tops CM, et al. The importance of a large sample cohort for studies on modifier genes influencing disease severity in FAP patients. Hered Cancer Clin Pract. 2013;11(1):20.  https://doi.org/10.1186/1897-4287-11-20.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Worthley DL, Phillips KD, Wayte N, Schrader KA, Healey S, Kaurah P, et al. Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS): a new autosomal dominant syndrome. Gut. 2012;61(5):774–9.  https://doi.org/10.1136/gutjnl-2011-300348.CrossRefPubMedGoogle Scholar
  41. 41.
    Jasperson KW, Patel SG, Ahnen DJ. APC-associated polyposis conditions. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, et al., editors. GeneReviews(R). Seattle: University of Washington; 1993.Google Scholar
  42. 42.
    Li J, Woods SL, Healey S, Beesley J, Chen X, Lee JS, et al. Point mutations in exon 1B of APC reveal gastric adenocarcinoma and proximal polyposis of the stomach as a familial adenomatous polyposis variant. Am J Hum Genet. 2016;98(5):830–42.  https://doi.org/10.1016/j.ajhg.2016.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    McDuffie LA, Sabesan A, Allgaeuer M, Xin L, Koh C, Heller T, et al. Beta-Catenin activation in fundic gland polyps, gastric cancer and colonic polyps in families afflicted by ‘gastric adenocarcinoma and proximal polyposis of the stomach’ (GAPPS). J Clin Pathol. 2016;69(9):826–33.  https://doi.org/10.1136/jclinpath-2016-203746.CrossRefPubMedGoogle Scholar
  44. 44.
    Uchino S, Ishikawa H, Miyauchi A, Hirokawa M, Noguchi S, Ushiama M, et al. Age- and gender-specific risk of thyroid cancer in patients with familial adenomatous polyposis. J Clin Endocrinol Metab. 2016;101(12):4611–7.  https://doi.org/10.1210/jc.2016-2043.CrossRefPubMedGoogle Scholar
  45. 45.
    Clark SK, Phillips RK. Desmoids in familial adenomatous polyposis. Br J Surg. 1996;83(11):1494–504.CrossRefGoogle Scholar
  46. 46.
    Lips DJ, Barker N, Clevers H, Hennipman A. The role of APC and beta-catenin in the aetiology of aggressive fibromatosis (desmoid tumors). Eur J Surg Oncol. 2009;35(1):3–10.  https://doi.org/10.1016/j.ejso.2008.07.003.CrossRefPubMedGoogle Scholar
  47. 47.
    Fallen T, Wilson M, Morlan B, Lindor NM. Desmoid tumors – a characterization of patients seen at Mayo Clinic 1976–1999. Familial Cancer. 2006;5(2):191–4.  https://doi.org/10.1007/s10689-005-5959-5.CrossRefPubMedGoogle Scholar
  48. 48.
    Kattentidt Mouravieva AA, Geurts-Giele IR, de Krijger RR, van Noesel MM, van de Ven CP, van den Ouweland AM, et al. Identification of Familial Adenomatous Polyposis carriers among children with desmoid tumours. Eur J Cancer (Oxford, England: 1990). 2012;48(12):1867–74.  https://doi.org/10.1016/j.ejca.2012.01.004.CrossRefGoogle Scholar
  49. 49.
    Nieuwenhuis MH, Lefevre JH, Bulow S, Jarvinen H, Bertario L, Kerneis S, et al. Family history, surgery, and APC mutation are risk factors for desmoid tumors in familial adenomatous polyposis: an international cohort study. Dis Colon Rectum. 2011;54(10):1229–34.  https://doi.org/10.1097/DCR.0b013e318227e4e8.CrossRefPubMedGoogle Scholar
  50. 50.
    Smith TG, Clark SK, Katz DE, Reznek RH, Phillips RK. Adrenal masses are associated with familial adenomatous polyposis. Dis Colon Rectum. 2000;43(12):1739–42.CrossRefGoogle Scholar
  51. 51.
    Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. Am J Gastroenterol. 2006;101(2):385–98.CrossRefGoogle Scholar
  52. 52.
    Friedl W, Aretz S. Familial adenomatous polyposis: experience from a study of 1164 unrelated german polyposis patients. Hered Cancer Clin Pract. 2005;3(3):95–114.  https://doi.org/10.1186/1897-4287-3-3-95.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Coffin CM, Hornick JL, Zhou H, Fletcher CD. Gardner fibroma: a clinicopathologic and immunohistochemical analysis of 45 patients with 57 fibromas. Am J Surg Pathol. 2007;31(3):410–6.  https://doi.org/10.1097/01.pas.0000213348.65014.0a.CrossRefPubMedGoogle Scholar
  54. 54.
    Dahl NA, Sheil A, Knapke S, Geller JI. Gardner fibroma: clinical and histopathologic implications of germline APC mutation association. J Pediatr Hematol Oncol. 2016;38(5):e154–7.  https://doi.org/10.1097/MPH.0000000000000493.CrossRefPubMedGoogle Scholar
  55. 55.
    Levesque S, Ahmed N, Nguyen VH, Nahal A, Blumenkrantz M, Puligandla P, et al. Neonatal Gardner fibroma: a sentinel presentation of severe familial adenomatous polyposis. Pediatrics. 2010;126(6):e1599–602.  https://doi.org/10.1542/peds.2010-1045.CrossRefPubMedGoogle Scholar
  56. 56.
    Vieira J, Pinto C, Afonso M, do Bom Sucesso M, Lopes P, Pinheiro M, et al. Identification of previously unrecognized FAP in children with Gardner fibroma. Eur J Hum Genet EJHG. 2015;23(5):715–8.  https://doi.org/10.1038/ejhg.2014.144.CrossRefPubMedGoogle Scholar
  57. 57.
    Schafer M, Kadmon M, Schmidt W, Treiber I, Moog U, Sutter C, et al. Neonatal Gardner fibroma leads to detection of familial adenomatous polyposis: two case reports. Eur J Pediatr Surg Rep. 2016;4(1):17–21.  https://doi.org/10.1055/s-0036-1582443.CrossRefGoogle Scholar
  58. 58.
    Coleman P, Barnard NA. Congenital hypertrophy of the retinal pigment epithelium: prevalence and ocular features in the optometric population. Ophthalmic Physiol Opt. 2007;27(6):547–55.  https://doi.org/10.1111/j.1475-1313.2007.00513.x.CrossRefPubMedGoogle Scholar
  59. 59.
    Nusliha A, Dalpatadu U, Amarasinghe B, Chandrasinghe PC, Deen KI. Congenital hypertrophy of retinal pigment epithelium (CHRPE) in patients with familial adenomatous polyposis (FAP); a polyposis registry experience. BMC Res Notes. 2014;7:734.  https://doi.org/10.1186/1756-0500-7-734.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Aretz S, Koch A, Uhlhaas S, Friedl W, Propping P, von Schweinitz D, et al. Should children at risk for familial adenomatous polyposis be screened for hepatoblastoma and children with apparently sporadic hepatoblastoma be screened for APC germline mutations? Pediatr Blood Cancer. 2006;47(6):811–8.  https://doi.org/10.1002/pbc.20698.CrossRefPubMedGoogle Scholar
  61. 61.
    Harvey J, Clark S, Hyer W, Hadzic N, Tomlinson I, Hinds R. Germline APC mutations are not commonly seen in children with sporadic hepatoblastoma. J Pediatr Gastroenterol Nutr. 2008;47(5):675–7.  https://doi.org/10.1097/MPG.0b013e318174e808.CrossRefPubMedGoogle Scholar
  62. 62.
    Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet. 2001;10(7):721–33.CrossRefGoogle Scholar
  63. 63.
    Segditsas S, Rowan AJ, Howarth K, Jones A, Leedham S, Wright NA, Gorman P, Chambers W, Domingo E, Roylance RR, Sawyer EJ, Sieber OM, Tomlinson IP. APC and the three-hit hypothesis. Oncogene. 2009 Jan 8;28(1):146–55. https://doi.org/10.1038/onc.2008.361. Epub 2008 Oct 6.CrossRefGoogle Scholar
  64. 64.
    Sieber O, Segditsas S, Knudsen A, Zhang J, Luz J, Rowan A, et al. Disease severity and genetic pathways in attenuated familial adenomatous polyposis vary greatly, but depend on the site of the germline mutation. Gut. 2006;55:1440.CrossRefGoogle Scholar
  65. 65.
    Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346(6205):1248012.  https://doi.org/10.1126/science.1248012.CrossRefPubMedGoogle Scholar
  66. 66.
    Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ, et al. The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet. 2002;11(13):1549–60.CrossRefGoogle Scholar
  67. 67.
    Cheadle JP, Krawczak M, Thomas MW, Hodges AK, Al-Tassan N, Fleming N, et al. Different combinations of biallelic APC mutation confer different growth advantages in colorectal tumours. Cancer Res. 2002;62(2):363–6.PubMedGoogle Scholar
  68. 68.
    Kumamoto K, Ishida H, Ohsawa T, Ishibashi K, Ushiama M, Yoshida T, et al. Germline and somatic mutations of the APC gene in papillary thyroid carcinoma associated with familial adenomatous polyposis: analysis of three cases and a review of the literature. Oncol Lett. 2015;10(4):2239–43.  https://doi.org/10.3892/ol.2015.3578.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Latchford A, Volikos E, Johnson V, Rogers P, Suraweera N, Tomlinson I, et al. APC mutations in FAP-associated desmoid tumours are non-random but not ‘just right’. Hum Mol Genet. 2007;16(1):78–82.  https://doi.org/10.1093/hmg/ddl442.CrossRefPubMedGoogle Scholar
  70. 70.
    Rashid M, Fischer A, Wilson CH, Tiffen J, Rust AG, Stevens P, et al. Adenoma development in familial adenomatous polyposis and MUTYH-associated polyposis: somatic landscape and driver genes. J Pathol. 2016;238(1):98–108.  https://doi.org/10.1002/path.4643.CrossRefPubMedGoogle Scholar
  71. 71.
    Cardoso J, Molenaar L, de Menezes RX, van Leerdam M, Rosenberg C, Moslein G, et al. Chromosomal instability in MYH- and APC-mutant adenomatous polyps. Cancer Res. 2006;66(5):2514–9.CrossRefGoogle Scholar
  72. 72.
    Major MB, Camp ND, Berndt JD, Yi XH, Goldenberg SJ, Hubbert C, et al. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 2007;316(5827):1043–6.  https://doi.org/10.1126/science/1141515.CrossRefPubMedGoogle Scholar
  73. 73.
    Wang WL, Nero C, Pappo A, Lev D, Lazar AJ, Lopez-Terrada D. CTNNB1 genotyping and APC screening in pediatric desmoid tumors: a proposed algorithm. Pediatr Dev Pathol Off J Soc Pediatr Pathol Paediatr Pathol Soc. 2012;15(5):361–7.  https://doi.org/10.2350/11-07-1064-OA.1.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clinical GeneticsLeiden University Medical CentreLeidenThe Netherlands
  2. 2.Institute of Human Genetics, Center for Hereditary Tumor Syndromes, University of BonnBonnGermany

Personalised recommendations