Constitutional Mismatch Repair Deficiency

  • Chrystelle Colas
  • Laurence Brugières
  • Katharina Wimmer


Inherited heterozygous mutations in the MMR genes result in Lynch syndrome (LS). Individuals with biallelic mutation of one of the MMR genes developed malignancies in childhood. This recessively inherited condition is named CMMRD for constitutional mismatch repair deficiency. The spectrum of tumours is distinct from LS. Malignant brain tumours are at least as frequent as gastrointestinal tumours, and in more than a third of cases, haematological malignancies were also reported. Patients also displayed clinical features of neurofibromatosis type 1. The most commonly involved genes in CMMRD are PMS2 and MSH6, while biallelic MLH1 and MSH2 mutations are rare.

Because of variable clinical presentation, lack of unequivocal diagnostic features and phenotypical overlap with other cancer syndromes, CMMRD syndrome is frequently unrecognised by clinicians, and its incidence is almost certainly underestimated. A better knowledge of clinical criteria and diagnosis methods for CMMRD syndrome will increase the number of patients being identified at the time when they develop their first tumour. This will allow to adjust treatment modalities and to offer surveillance strategies to detect other malignancies not only to the patient but also to his/her family.


Biallelic mutations Paediatric cancers Constitutional mismatch repair deficiency Cerebral tumours Lymphoma Colorectal cancer NF1 MMR 


  1. 1.
    Wang Q, Lasset C, Desseigne F, Frappaz D, Bergeron C, Navarro C, et al. Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res. 1999;59(2):294–7.PubMedGoogle Scholar
  2. 2.
    Ricciardone MD, Ozçelik T, Cevher B, Ozdağ H, Tuncer M, Gürgey A, et al. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res. 1999;59(2):290–3.PubMedGoogle Scholar
  3. 3.
    Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N, et al. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet. 2015;52(11):770–8.CrossRefGoogle Scholar
  4. 4.
    Wimmer K, Kratz CP, Vasen HFA, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J Med Genet. 2014;51(6):355–65.CrossRefGoogle Scholar
  5. 5.
    Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK, et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer Oxf Engl 1990. 2014;50(5):987–96.Google Scholar
  6. 6.
    Turcot J, Despres JP, St Pierre F. Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum. 1959;2:465–8.CrossRefGoogle Scholar
  7. 7.
    Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, et al. The molecular basis of Turcot’s syndrome. N Engl J Med. 1995;332(13):839–47.CrossRefGoogle Scholar
  8. 8.
    Shlien A, Campbell BB, de Borja R, Alexandrov LB, Merico D, Wedge D, et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet. 2015;47(3):257–62.CrossRefGoogle Scholar
  9. 9.
    Ripperger T, Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet. 2016;59(3):133–42.CrossRefGoogle Scholar
  10. 10.
    Aronson M, Gallinger S, Cohen Z, Cohen S, Dvir R, Elhasid R, et al. Gastrointestinal findings in the largest series of patients with hereditary biallelic mismatch repair deficiency syndrome: report from the International Consortium. Am J Gastroenterol. 2016;111(2):275–84.CrossRefGoogle Scholar
  11. 11.
    Wimmer K, Beilken A, Nustede R, Ripperger T, Lamottke B, Ure B, et al. A novel germline POLE mutation causes an early onset cancer prone syndrome mimicking constitutional mismatch repair deficiency. Familial Cancer. 2017;16(1):67–71.CrossRefGoogle Scholar
  12. 12.
    Chmara M, Wernstedt A, Wasag B, Peeters H, Renard M, Beert E, et al. Multiple pilomatricomas with somatic CTNNB1 mutations in children with constitutive mismatch repair deficiency. Genes Chromosomes Cancer. 2013;52(7):656–64.PubMedGoogle Scholar
  13. 13.
    Wimmer K, Rosenbaum T, Messiaen L. Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. Clin Genet. 2017;91(4):507–19.CrossRefGoogle Scholar
  14. 14.
    Gardès P, Forveille M, Alyanakian M-A, Aucouturier P, Ilencikova D, Leroux D, et al. Human MSH6 deficiency is associated with impaired antibody maturation. J Immunol Baltim Md 1950. 2012;188(4):2023–9.Google Scholar
  15. 15.
    Crouse GF. Non-canonical actions of mismatch repair. DNA Repair. 2016;38:102–9.CrossRefGoogle Scholar
  16. 16.
    Win AK, Jenkins MA, Dowty JG, Antoniou AC, Lee A, Giles GG, et al. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2017;26(3):404–12.CrossRefGoogle Scholar
  17. 17.
    Colas C. Clinical and biological consequences of constitutional mismatch repair deficiency in human [Thèse de doctorat en Génétique des tumeurs]. Paris 6. 2011.Google Scholar
  18. 18.
    Felton KEA, Gilchrist DM, Andrew SE. Constitutive deficiency in DNA mismatch repair. Clin Genet. 2007;71(6):483–98.CrossRefGoogle Scholar
  19. 19.
    Li L, Hamel N, Baker K, McGuffin MJ, Couillard M, Gologan A, et al. A homozygous PMS2 founder mutation with an attenuated constitutional mismatch repair deficiency phenotype. J Med Genet. 2015;52(5):348–52.CrossRefGoogle Scholar
  20. 20.
    Bodo S, Colas C, Buhard O, Collura A, Tinat J, Lavoine N, et al. Diagnosis of constitutional mismatch repair-deficiency syndrome based on microsatellite instability and lymphocyte tolerance to methylating agents. Gastroenterology. 2015;149(4):1017–1029.e3.CrossRefGoogle Scholar
  21. 21.
    Wimmer K, Wernstedt A. PMS2 gene mutational analysis: direct cDNA sequencing to circumvent pseudogene interference. Methods Mol Biol Clifton NJ. 2014;1167:289–302.CrossRefGoogle Scholar
  22. 22.
    Vaughn CP, Hart KJ, Samowitz WS, Swensen JJ. Avoidance of pseudogene interference in the detection of 3′ deletions in PMS2. Hum Mutat. 2011;32(9):1063–71.CrossRefGoogle Scholar
  23. 23.
    van der Klift HM, Mensenkamp AR, Drost M, Bik EC, Vos YJ, Gille HJJP, et al. Comprehensive mutation analysis of PMS2 in a large cohort of probands suspected of lynch syndrome or constitutional mismatch repair deficiency syndrome. Hum Mutat. 2016;37(11):1162–79.CrossRefGoogle Scholar
  24. 24.
    Ingham D, Diggle CP, Berry I, Bristow CA, Hayward BE, Rahman N, et al. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome. Hum Mutat. 2013;34(6):847–52.CrossRefGoogle Scholar
  25. 25.
    Vogt J, Wernstedt A, Ripperger T, Pabst B, Zschocke J, Kratz C, et al. PMS2 inactivation by a complex rearrangement involving an HERV retroelement and the inverted 100-kb duplicon on 7p22.1. Eur J Hum Genet EJHG. 2016;24(11):1598–604.CrossRefGoogle Scholar
  26. 26.
    Vasen HFA, Ghorbanoghli Z, Bourdeaut F, Cabaret O, Caron O, Duval A, et al. Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium ‘Care for CMMR-D’ (C4CMMR-D). J Med Genet. 2014;51(5):283–93.CrossRefGoogle Scholar
  27. 27.
    Durno CA, Aronson M, Tabori U, Malkin D, Gallinger S, Chan HSL. Oncologic surveillance for subjects with biallelic mismatch repair gene mutations: 10 year follow-up of a kindred. Pediatr Blood Cancer. 2012;59(4):652–6.CrossRefGoogle Scholar
  28. 28.
    Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer. 2008;8(1):24–36.CrossRefGoogle Scholar
  29. 29.
    Ilencikova D, Sejnova D, Jindrova J, Babal P. High-grade brain tumors in siblings with biallelic MSH6 mutations. Pediatr Blood Cancer. 2011;57(6):1067–70.CrossRefGoogle Scholar
  30. 30.
    Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 2006;66(8):3987–91.CrossRefGoogle Scholar
  31. 31.
    Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(19):2206–11.CrossRefGoogle Scholar
  32. 32.
    Burn J, Gerdes A-M, Macrae F, Mecklin J-P, Moeslein G, Olschwang S, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet Lond Engl. 2011;378(9809):2081–7.CrossRefGoogle Scholar
  33. 33.
    Gottschling S, Reinhard H, Pagenstecher C, Krüger S, Raedle J, Plotz G, et al. Hypothesis: possible role of retinoic acid therapy in patients with biallelic mismatch repair gene defects. Eur J Pediatr. 2008;167(2):225–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Chrystelle Colas
    • 1
  • Laurence Brugières
    • 2
  • Katharina Wimmer
    • 3
  1. 1.Department of GeneticsCurie InstituteParisFrance
  2. 2.Department of Children and Adolescents OncologyGustave Roussy Cancer CampusVillejuifFrance
  3. 3.Division of Human GeneticsMedical University InnsbruckInnsbruckAustria

Personalised recommendations