Advertisement

The Immune Biology of Microsatellite Unstable Cancer

  • Matthias Kloor
  • Magnus von Knebel Doeberitz
Chapter

Abstract

Lynch syndrome-associated cancers arise through DNA mismatch repair (MMR) deficiency. MMR deficiency boosts the accumulation of insertion/deletion mutations at repetitive microsatellite sequences throughout the cancer cell genome (microsatellite instability, MSI). As microsatellite sequences are common in gene-encoding regions, MMR deficiency can cause gene inactivation through frameshift mutations. These frameshift mutations can trigger the generation of mutant proteins carrying novel amino acid sequences resulting from a shift of the translational reading frame (frameshift neoantigens). MSI cancers express a defined set of neoantigens, which are the direct result of functionally relevant driver mutations. The fact that these mutation events not only always affect the same genes but also exactly the same microsatellite loci within these genes leads to the unique situation that most MSI cancers share a precisely defined set of mutational neoantigens. MSI cancer patients frequently develop immune responses against these neoantigens. Surprisingly, such immune responses were also observed in tumor-free Lynch syndrome carriers, indicating that Lynch syndrome is characterized by lifelong interaction between the immune system and precancerous cells. We discuss the current knowledge about driver mutation-derived neoantigens, immune evasion mechanisms of MSI cancers, and potential clinical approaches to improve the host’s immune response against frameshift neoantigens.

Keywords

Cancer vaccines Frameshift peptide neoantigens Immune evasion Immune therapy Lynch syndrome Microsatellite instability 

References

  1. 1.
    Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13.  https://doi.org/10.1038/nature10762.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.  https://doi.org/10.1016/j.cell.2011.02.013.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386(6625):623–7.  https://doi.org/10.1038/386623a0.CrossRefPubMedGoogle Scholar
  4. 4.
    Michor F, Iwasa Y, Vogelstein B, Lengauer C, Nowak MA. Can chromosomal instability initiate tumorigenesis? Semin Cancer Biol. 2005;15(1):43–9.  https://doi.org/10.1016/j.semcancer.2004.09.007.CrossRefPubMedGoogle Scholar
  5. 5.
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96(15):8681–6.CrossRefGoogle Scholar
  6. 6.
    Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8(12):686–700.  https://doi.org/10.1038/nrgastro.2011.173.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shia J, Ellis NA, Paty PB, Nash GM, Qin J, Offit K, Zhang XM, Markowitz AJ, Nafa K, Guillem JG, Wong WD, Gerald WL, Klimstra DS. Value of histopathology in predicting microsatellite instability in hereditary nonpolyposis colorectal cancer and sporadic colorectal cancer. Am J Surg Pathol. 2003;27(11):1407–17.CrossRefGoogle Scholar
  8. 8.
    Shia J, Holck S, Depetris G, Greenson JK, Klimstra DS. Lynch syndrome-associated neoplasms: a discussion on histopathology and immunohistochemistry. Familial Cancer. 2013;12(2):241–60.  https://doi.org/10.1007/s10689-013-9612-4.CrossRefPubMedGoogle Scholar
  9. 9.
    Buckowitz A, Knaebel HP, Benner A, Blaker H, Gebert J, Kienle P, von Knebel DM, Kloor M. Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases. Br J Cancer. 2005;92(9):1746–53.  https://doi.org/10.1038/sj.bjc.6602534.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4.  https://doi.org/10.1126/science.1129139.CrossRefPubMedGoogle Scholar
  11. 11.
    Jung SB, Lee HI, Oh HK, Shin IH, Jeon CH. Clinico-pathologic parameters for prediction of microsatellite instability in colorectal cancer. Cancer Res Treat Off J Kor Cancer Assoc. 2012;44(3):179–86.  https://doi.org/10.4143/crt.2012.44.3.179.CrossRefGoogle Scholar
  12. 12.
    Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073–87. e2073.  https://doi.org/10.1053/j.gastro.2009.12.064.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kloor M, Huth C, Voigt AY, Benner A, Schirmacher P, von Knebel Doeberitz M, Blaker H. Prevalence of mismatch repair-deficient crypt foci in lynch syndrome: a pathological study. Lancet Oncol. 2012;13(6):598–606.  https://doi.org/10.1016/S1470-2045(12)70109-2.CrossRefPubMedGoogle Scholar
  14. 14.
    Moller P, Seppala T, Bernstein I, Holinski-Feder E, Sala P, Evans DG, Lindblom A, Macrae F, Blanco I, Sijmons R, Jeffries J, Vasen H, Burn J, Nakken S, Hovig E, Rodland EA, Tharmaratnam K, de Vos Tot Nederveen Cappel WH, Hill J, Wijnen J, Green K, Lalloo F, Sunde L, Mints M, Bertario L, Pineda M, Navarro M, Morak M, Renkonen-Sinisalo L, Frayling IM, Plazzer JP, Pylvanainen K, Sampson JR, Capella G, Mecklin JP, Moslein G. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: first report from the prospective Lynch syndrome database. Gut. 2017;66(3):464–72.  https://doi.org/10.1136/gutjnl-2015-309675.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LA Jr. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015.  https://doi.org/10.1056/NEJMoa1500596.
  16. 16.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjord JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jager N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdes-Mas R, van Buuren MM, van’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.  https://doi.org/10.1038/nature12477.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Timmermann B, Kerick M, Roehr C, Fischer A, Isau M, Boerno ST, Wunderlich A, Barmeyer C, Seemann P, Koenig J, Lappe M, Kuss AW, Garshasbi M, Bertram L, Trappe K, Werber M, Herrmann BG, Zatloukal K, Lehrach H, Schweiger MR. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One. 2010;5(12):e15661.  https://doi.org/10.1371/journal.pone.0015661.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dorard C, de Thonel A, Collura A, Marisa L, Svrcek M, Lagrange A, Jego G, Wanherdrick K, Joly AL, Buhard O, Gobbo J, Penard-Lacronique V, Zouali H, Tubacher E, Kirzin S, Selves J, Milano G, Etienne-Grimaldi MC, Bengrine-Lefevre L, Louvet C, Tournigand C, Lefevre JH, Parc Y, Tiret E, Flejou JF, Gaub MP, Garrido C, Duval A. Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med. 2011;17(10):1283–9.  https://doi.org/10.1038/nm.2457.CrossRefPubMedGoogle Scholar
  19. 19.
    Sammalkorpi H, Alhopuro P, Lehtonen R, Tuimala J, Mecklin JP, Jarvinen HJ, Jiricny J, Karhu A, Aaltonen LA. Background mutation frequency in microsatellite-unstable colorectal cancer. Cancer Res. 2007;67(12):5691–8.  https://doi.org/10.1158/0008-5472.CAN-06-4314.CrossRefPubMedGoogle Scholar
  20. 20.
    Woerner SM, Kloor M, von Knebel DM, Gebert JF. Microsatellite instability in the development of DNA mismatch repair deficient tumors. Cancer Biomark Sect A Dis Markers. 2006;2(1–2):69–86.Google Scholar
  21. 21.
    Alhopuro P, Sammalkorpi H, Niittymaki I, Bistrom M, Raitila A, Saharinen J, Nousiainen K, Lehtonen HJ, Heliovaara E, Puhakka J, Tuupanen S, Sousa S, Seruca R, Ferreira AM, Hofstra RM, Mecklin JP, Jarvinen H, Ristimaki A, Orntoft TF, Hautaniemi S, Arango D, Karhu A, Aaltonen LA. Candidate driver genes in microsatellite-unstable colorectal cancer. Int J Cancer. 2012;130(7):1558–66.  https://doi.org/10.1002/ijc.26167.CrossRefPubMedGoogle Scholar
  22. 22.
    Duval A, Rolland S, Compoint A, Tubacher E, Iacopetta B, Thomas G, Hamelin R. Evolution of instability at coding and non-coding repeat sequences in human MSI-H colorectal cancers. Hum Mol Genet. 2001;10(5):513–8.CrossRefGoogle Scholar
  23. 23.
    Woerner SM, Gebert J, Yuan YP, Sutter C, Ridder R, Bork P, von Knebel Doeberitz M. Systematic identification of genes with coding microsatellites mutated in DNA mismatch repair-deficient cancer cells. Int J Cancer. 2001;93(1):12–9.CrossRefGoogle Scholar
  24. 24.
    Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy K, Seruca R, Iacopetta B, Hamelin R. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology. 2002;123(6):1804–11.  https://doi.org/10.1053/gast.2002.37070.CrossRefPubMedGoogle Scholar
  25. 25.
    Findeisen P, Kloor M, Merx S, Sutter C, Woerner SM, Dostmann N, Benner A, Dondog B, Pawlita M, Dippold W, Wagner R, Gebert J, von Knebel Doeberitz M. T25 repeat in the 3' untranslated region of the CASP2 gene: a sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res. 2005;65(18):8072–8.  https://doi.org/10.1158/0008-5472.CAN-04-4146.CrossRefPubMedGoogle Scholar
  26. 26.
    Woerner SM, Benner A, Sutter C, Schiller M, Yuan YP, Keller G, Bork P, Doeberitz M, Gebert JF. Pathogenesis of DNA repair-deficient cancers: a statistical meta-analysis of putative Real Common Target genes. Oncogene. 2003;22(15):2226–35.  https://doi.org/10.1038/sj.onc.1206421.CrossRefPubMedGoogle Scholar
  27. 27.
    Kim TM, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell. 2013;155(4):858–68.  https://doi.org/10.1016/j.cell.2013.10.015.CrossRefPubMedGoogle Scholar
  28. 28.
    Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016;22(11):1342–50.  https://doi.org/10.1038/nm.4191.CrossRefPubMedGoogle Scholar
  29. 29.
    Warth A, Korner S, Penzel R, Muley T, Dienemann H, Schirmacher P, von Knebel-Doeberitz M, Weichert W, Kloor M. Microsatellite instability in pulmonary adenocarcinomas: a comprehensive study of 480 cases. Virchows Archiv Int J Pathol. 2016;468(3):313–9.  https://doi.org/10.1007/s00428-015-1892-7.CrossRefGoogle Scholar
  30. 30.
    Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995;268(5215):1336–8.CrossRefGoogle Scholar
  31. 31.
    Kloor M, von Knebel Doeberitz M. The immune biology of microsatellite-unstable cancer. Trends in Cancer. 2016;2(3):121–31.CrossRefGoogle Scholar
  32. 32.
    Townsend A, Ohlen C, Rogers M, Edwards J, Mukherjee S, Bastin J. Source of unique tumour antigens. Nature. 1994;371(6499):662.  https://doi.org/10.1038/371662a0.CrossRefPubMedGoogle Scholar
  33. 33.
    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.  https://doi.org/10.1126/science.aaa4971.CrossRefPubMedGoogle Scholar
  34. 34.
    Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N, Hruban C, Guthrie VB, Rodgers K, Naidoo J, Kang H, Sharfman W, Georgiades C, Verde F, Illei P, Li QK, Gabrielson E, Brock MV, Zahnow CA, Baylin SB, Scharpf RB, Brahmer JR, Karchin R, Pardoll DM, Velculescu VE. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7(3):264–76.  https://doi.org/10.1158/2159-8290.CD-16-0828.CrossRefPubMedGoogle Scholar
  35. 35.
    Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, Bahl S, Cao Y, Amin-Mansour A, Yamauchi M, Sukawa Y, Stewart C, Rosenberg M, Mima K, Inamura K, Nosho K, Nowak JA, Lawrence MS, Giovannucci EL, Chan AT, Ng K, Meyerhardt JA, Van Allen EM, Getz G, Gabriel SB, Lander ES, Wu CJ, Fuchs CS, Ogino S, Garraway LA. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;17(4):1206.  https://doi.org/10.1016/j.celrep.2016.10.009.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Heemskerk B, Kvistborg P, Schumacher TN. The cancer antigenome. EMBO J. 2013;32(2):194–203.  https://doi.org/10.1038/emboj.2012.333.CrossRefPubMedGoogle Scholar
  37. 37.
    Linnebacher M, Gebert J, Rudy W, Woerner S, Yuan YP, Bork P, von Knebel Doeberitz M. Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer. 2001;93(1):6–11.CrossRefGoogle Scholar
  38. 38.
    Saeterdal I, Gjertsen MK, Straten P, Eriksen JA, Gaudernack G. A TGF betaRII frameshift-mutation-derived CTL epitope recognised by HLA-A2-restricted CD8+ T cells. Cancer Immunol Immunother CII. 2001;50(9):469–76.CrossRefGoogle Scholar
  39. 39.
    Ripberger E, Linnebacher M, Schwitalle Y, Gebert J, von Knebel DM. Identification of an HLA-A0201-restricted CTL epitope generated by a tumor-specific frameshift mutation in a coding microsatellite of the OGT gene. J Clin Immunol. 2003;23(5):415–23.CrossRefGoogle Scholar
  40. 40.
    Schwitalle Y, Linnebacher M, Ripberger E, Gebert J, von Knebel Doeberitz M. Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells. Cancer Immun. 2004;4:14.PubMedGoogle Scholar
  41. 41.
    Maletzki C, Schmidt F, Dirks WG, Schmitt M, Linnebacher M. Frameshift-derived neoantigens constitute immunotherapeutic targets for patients with microsatellite-instable haematological malignancies: frameshift peptides for treating MSI+ blood cancers. Eur J Cancer. 2013;49(11):2587–95.  https://doi.org/10.1016/j.ejca.2013.02.035.CrossRefPubMedGoogle Scholar
  42. 42.
    Saeterdal I, Bjorheim J, Lislerud K, Gjertsen MK, Bukholm IK, Olsen OC, Nesland JM, Eriksen JA, Moller M, Lindblom A, Gaudernack G. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci U S A. 2001;98(23):13255–60.  https://doi.org/10.1073/pnas.231326898.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP, Tariverdian M, Benner A, von Knebel DM. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology. 2008;134(4):988–97.  https://doi.org/10.1053/j.gastro.2008.01.015.CrossRefPubMedGoogle Scholar
  44. 44.
    Maby P, Tougeron D, Hamieh M, Mlecnik B, Kora H, Bindea G, Angell HK, Fredriksen T, Elie N, Fauquembergue E, Drouet A, Leprince J, Benichou J, Mauillon J, Le Pessot F, Sesboue R, Tuech JJ, Sabourin JC, Michel P, Frebourg T, Galon J, Latouche JB. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res. 2015;75(17):3446–55.  https://doi.org/10.1158/0008-5472.CAN-14-3051.CrossRefPubMedGoogle Scholar
  45. 45.
    Staffa L, Echterdiek F, Nelius N, Benner A, Werft W, Lahrmann B, Grabe N, Schneider M, Tariverdian M, von Knebel DM, Blaker H, Kloor M. Mismatch repair-deficient crypt foci in lynch syndrome – molecular alterations and association with clinical parameters. PLoS One. 2015;10(3):e0121980.  https://doi.org/10.1371/journal.pone.0121980.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.  https://doi.org/10.1038/ni1102-991.CrossRefPubMedGoogle Scholar
  47. 47.
    Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases – elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.  https://doi.org/10.1016/j.coi.2014.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Quehenberger F, Vasen HF, van Houwelingen HC. Risk of colorectal and endometrial cancer for carriers of mutations of the hMLH1 and hMSH2 gene: correction for ascertainment. J Med Genet. 2005;42(6):491–6.  https://doi.org/10.1136/jmg.2004.024299.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kloor M, Michel S, von Knebel Doeberitz M. Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer. 2010;127(5):1001–10.  https://doi.org/10.1002/ijc.25283.CrossRefPubMedGoogle Scholar
  50. 50.
    Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1–2):48–61.  https://doi.org/10.1016/j.cell.2014.12.033.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chang CC, Ferrone S. Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother CII. 2007;56(2):227–36.  https://doi.org/10.1007/s00262-006-0183-1.CrossRefPubMedGoogle Scholar
  52. 52.
    Cabrera CM, Jimenez P, Cabrera T, Esparza C, Ruiz-Cabello F, Garrido F. Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: beta2-microglobulin inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens. 2003;61(3):211–9.CrossRefGoogle Scholar
  53. 53.
    Kloor M, Michel S, Buckowitz B, Ruschoff J, Buttner R, Holinski-Feder E, Dippold W, Wagner R, Tariverdian M, Benner A, Schwitalle Y, Kuchenbuch B, von Knebel DM. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer. 2007;121(2):454–8.  https://doi.org/10.1002/ijc.22691.CrossRefPubMedGoogle Scholar
  54. 54.
    Dierssen JW, de Miranda NF, Ferrone S, van Puijenbroek M, Cornelisse CJ, Fleuren GJ, van Wezel T, Morreau H. HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer. 2007;7:33.  https://doi.org/10.1186/1471-2407-7-33.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Echterdiek F, Janikovits J, Staffa L, Muller M, Lahrmann B, Fruhschutz M, Hartog B, Nelius N, Benner A, Tariverdian M, von Knebel DM, Grabe N, Kloor M. Low density of FOXP3-positive T cells in normal colonic mucosa is related to the presence of beta2-microglobulin mutations in Lynch syndrome-associated colorectal cancer. Oncoimmunology. 2016;5(2):e1075692.  https://doi.org/10.1080/2162402X.2015.1075692.CrossRefPubMedGoogle Scholar
  56. 56.
    Tikidzhieva A, Benner A, Michel S, Formentini A, Link KH, Dippold W, von Knebel DM, Kornmann M, Kloor M. Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer. 2012;106(6):1239–45.  https://doi.org/10.1038/bjc.2012.53.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Koelzer VH, Baker K, Kassahn D, Baumhoer D, Zlobec I. Prognostic impact of beta-2-microglobulin expression in colorectal cancers stratified by mismatch repair status. J Clin Pathol. 2012;65(11):996–1002.  https://doi.org/10.1136/jclinpath-2012-200742.CrossRefPubMedGoogle Scholar
  58. 58.
    Kloor M, Becker C, Benner A, Woerner SM, Gebert J, Ferrone S, von Knebel DM. Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res. 2005;65(14):6418–24.  https://doi.org/10.1158/0008-5472.CAN-05-0044.CrossRefPubMedGoogle Scholar
  59. 59.
    Michel S, Linnebacher M, Alcaniz J, Voss M, Wagner R, Dippold W, Becker C, von Knebel DM, Ferrone S, Kloor M. Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. Int J Cancer. 2010;127(4):889–98.  https://doi.org/10.1002/ijc.25106.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Surmann EM, Voigt AY, Michel S, Bauer K, Reuschenbach M, Ferrone S, von Knebel DM, Kloor M. Association of high CD4-positive T cell infiltration with mutations in HLA class II-regulatory genes in microsatellite-unstable colorectal cancer. Cancer Immunol Immunother. 2014.  https://doi.org/10.1007/s00262-014-1638-4.
  61. 61.
    Stelloo E, Versluis MA, Nijman HW, de Bruyn M, Plat A, Osse EM, van Dijk RH, Nout RA, Creutzberg CL, de Bock GH, Smit VT, Bosse T, Hollema H. Microsatellite instability derived JAK1 frameshift mutations are associated with tumor immune evasion in endometrioid endometrial cancer. Oncotarget. 2016;7(26):39885–93.  https://doi.org/10.18632/oncotarget.9414.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Llosa NJ, Cruise M, Tam A, Wick EC, Hechenbleikner EM, Taube JM, Blosser L, Fan H, Wang H, Luber B, Zhang M, Papadopoulos N, Kinzler KW, Vogelstein B, Sears CL, Anders RA, Pardoll DM, Housseau F. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2014.  https://doi.org/10.1158/2159-8290.CD-14-0863.
  63. 63.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.  https://doi.org/10.1126/science.1235122.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.  https://doi.org/10.1038/nature11252.CrossRefGoogle Scholar
  65. 65.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.  https://doi.org/10.1038/nrc3239.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.  https://doi.org/10.1038/nature13954.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Burn J, Gerdes AM, Macrae F, Mecklin JP, Moeslein G, Olschwang S, Eccles D, Evans DG, Maher ER, Bertario L, Bisgaard ML, Dunlop MG, Ho JW, Hodgson SV, Lindblom A, Lubinski J, Morrison PJ, Murday V, Ramesar R, Side L, Scott RJ, Thomas HJ, Vasen HF, Barker G, Crawford G, Elliott F, Movahedi M, Pylvanainen K, Wijnen JT, Fodde R, Lynch HT, Mathers JC, Bishop DT. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011;378(9809):2081–7.  https://doi.org/10.1016/S0140-6736(11)61049-0.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zelenay S, van der Veen AG, Bottcher JP, Snelgrove KJ, Rogers N, Acton SE, Chakravarty P, Girotti MR, Marais R, Quezada SA, Sahai E, Reis e Sousa C. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162(6):1257–70.  https://doi.org/10.1016/j.cell.2015.08.015.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Tumor BiologyInstitute of Pathology, University Hospital Heidelberg, Clinical Cooperation Unit (CCU 105) of the German Cancer Research Center and Molecular Medicine Partner Unit (MMPU) of the European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations