Hamartomatous Polyposis Syndromes

  • Joanne Ngeow
  • Eliza Courtney
  • Kiat Hon Lim
  • Charis Eng
Chapter

Abstract

The hamartomatous polyposis syndromes (HPS) include a small but appreciable number of the gastrointestinal hereditary cancer syndromes and are characterized by the presence of gastrointestinal (GI) hamartomatous polyps. Hamartomatous polyps account for a very small percentage of all GI polyps. They arise from excessive proliferation of the epithelial and stromal cells native to the tissue of origin and contain components from any of the three germ layers forming the intestines. The process underlying the progression of hamartomatous polyps to cancer is not fully understood. HPS occur at approximately one tenth of the frequency of adenomatous polyposis syndromes and account for less than 1% of colorectal cancer cases, although their prevalence may be higher than originally thought. It is now well recognized that these syndromes confer a substantial risk of colonic and extracolonic malignancies, therefore making it important to identify individuals with HPS for further risk management.

Keywords

Cowden syndrome Juvenile polyposis Peutz-Jeghers syndrome PTEN Hamartomas Colorectal cancers Extra-colonic cancer risk 

Notes

Disclosure of Potential Conflict of Interest

No author had any relevant financial or personal relationships that could inappropriately influence or bias this work.

References

  1. 1.
    Schreibman IR, Baker M, Amos C, McGarrity TJ. The Hamartomatous polyposis syndromes - a clinical and molecular review. Am J Gastroenterol. 2005;100:476–90.CrossRefGoogle Scholar
  2. 2.
    Ngeow J, Heald B, Rybicki LA, et al. Prevalence of germline PTEN, BMPR1A, SMAD4, STK11, and ENG mutations in patients with moderate-load colorectal polyps. Gastroenterology. 2013;144:1402–9.  https://doi.org/10.1053/j.gastro.2013.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jelsig AM. Hamartomatous polyps – a clinical and molecular genetic study. Dan Med J. 2016.  https://doi.org/10.1111/cge.12693.
  4. 4.
    Aretz S. The differential diagnosis and surveillance of hereditary gastrointestinal polyposis syndromes. Dtsch Arztebl Int. 2010;107:163–73.  https://doi.org/10.3238/arztebl.2010.0163.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    van Lier M, Wagner A, Mathus-Vliegen E, et al. High cancer risk in Peutz–Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol. 2010;105:1258–64.  https://doi.org/10.1038/ajg.2009.725.CrossRefPubMedGoogle Scholar
  6. 6.
    Latchford A, Phillips R. Gastrointestinal polyps and cancer in Peutz-Jeghers syndrome: clinical aspects. Familial Cancer. 2011;10:455–61.  https://doi.org/10.1007/s10689-011-9442-1.CrossRefPubMedGoogle Scholar
  7. 7.
    Giardiello F, Trimbath J. Peutz-Jeghers syndrome and management recommendations. Clin Gastroenterol Hepatol. 2006;4:408–15.  https://doi.org/10.1016/j.cgh.2005.11.005.CrossRefPubMedGoogle Scholar
  8. 8.
    Entius MM, Westerman AM, Giardiello FM, et al. Peutz-Jeghers polyps, dysplasia, and K-ras codon 12 mutations. Gut. 1997;41:320–2.CrossRefGoogle Scholar
  9. 9.
    Yaguchi T, Wen-Ying L, Hasegawa K, et al. Peutz-Jeghers polyp with several foci of glandular dysplasia: report of a case. Dis Colon Rectum. 1982;25:592–6.CrossRefGoogle Scholar
  10. 10.
    Beggs A, Latchford A, Vasen H, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59:975–86.  https://doi.org/10.1136/gut.2009.198499.CrossRefPubMedGoogle Scholar
  11. 11.
    Vogel T, Schumacher V, Saleh A, et al. Extraintestinal polyps in Peutz-Jeghers syndrome: presentation of four cases and review of the literature. Deutsche Peutz-Jeghers-Studiengruppe. Int J Color Dis. 2000;15:118–23.CrossRefGoogle Scholar
  12. 12.
    Amos CI, Keitheri-Cheteri MB, Sabripour M, et al. Genotype-phenotype correlations in Peutz-Jeghers syndrome. J Med Genet. 2004;41:327–33.  https://doi.org/10.1136/jmg.2003.010900.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Giardiello FM, Brensinger JD, Tersmette AC, et al. Very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology. 2000;119:1447–53.  https://doi.org/10.1053/gast.2000.20228.CrossRefPubMedGoogle Scholar
  14. 14.
    Hearle N, Schumacher V, Menko FH, et al. Frequency and Spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12:3209–15.  https://doi.org/10.1158/1078-0432.CCR-06-0083.CrossRefPubMedGoogle Scholar
  15. 15.
    Korsse SE, Harinck F, van Lier MGF, et al. Pancreatic cancer risk in Peutz-Jeghers syndrome patients: a large cohort study and implications for surveillance. J Med Genet. 2013;50:59–64.  https://doi.org/10.1136/jmedgenet-2012-101277.CrossRefPubMedGoogle Scholar
  16. 16.
    Lim W, Olschwang S, Keller JJ, et al. Relative frequency and morphology of cancers in STK11 mutation carriers1 ☆. Gastroenterology. 2004;126:1788–94.  https://doi.org/10.1053/j.gastro.2004.03.014.CrossRefPubMedGoogle Scholar
  17. 17.
    Resta N, Pierannunzio D, Lenato GM, et al. Cancer risk associated with STK11/LKB1 germline mutations in Peutz–Jeghers syndrome patients: results of an Italian multicenter study. Dig Liver Dis. 2013;45:606–11.  https://doi.org/10.1016/j.dld.2012.12.018.CrossRefPubMedGoogle Scholar
  18. 18.
    Mehenni H, Resta N, Park J-G, et al. Cancer risks in LKB1 germline mutation carriers. Gut. 2006;55:984–90.  https://doi.org/10.1136/gut.2005.082990.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Korsse SE, Dewint P, Kuipers EJ, van Leerdam ME. Small bowel endoscopy and Peutz-Jeghers syndrome. Best Pract Res Clin Gastroenterol. 2012;26:263–78.  https://doi.org/10.1016/j.bpg.2012.03.009.CrossRefPubMedGoogle Scholar
  20. 20.
    Jelsig AM, Qvist N, Brusgaard K, et al. Hamartomatous polyposis syndromes: a review. Orphanet J Rare Dis. 2014;9:101.  https://doi.org/10.1186/1750-1172-9-101.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    van Lier M, Mathus-Vliegen E, Wagner A, et al. High cumulative risk of intussusception in patients with Peutz–Jeghers syndrome: time to update surveillance guidelines? Am J Gastroenterol. 2011;106:940–5.  https://doi.org/10.1038/ajg.2010.473.CrossRefPubMedGoogle Scholar
  22. 22.
    Goldstein SA, Hoffenberg EJ. Peutz-Jegher syndrome in childhood. J Pediatr Gastroenterol Nutr. 2013;56:191–5.  https://doi.org/10.1097/MPG.0b013e318271643c.CrossRefPubMedGoogle Scholar
  23. 23.
    Brown G, Fraser C, Schofield G, et al. Video capsule endoscopy in Peutz-Jeghers syndrome: a blinded comparison with barium follow-through for detection of small-bowel polyps. Endoscopy. 2006;38:385–90.  https://doi.org/10.1055/s-2006-925028.CrossRefPubMedGoogle Scholar
  24. 24.
    Gupta A, Postgate AJ, Burling D, et al. A prospective study of MR Enterography versus capsule endoscopy for the surveillance of adult patients with Peutz-Jeghers syndrome. Am J Roentgenol. 2010;195:108–16.  https://doi.org/10.2214/AJR.09.3174.CrossRefGoogle Scholar
  25. 25.
    Aretz S, Stienen D, Uhlhaas S, et al. High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat. 2005;26:513–9.  https://doi.org/10.1002/humu.20253.CrossRefPubMedGoogle Scholar
  26. 26.
    Papp J, Kovacs ME, Solyom S, et al. High prevalence of germline STK11 mutations in Hungarian Peutz-Jeghers syndrome patients. BMC Med Genet. 2010;11:169.  https://doi.org/10.1186/1471-2350-11-169.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mehenni H, Resta N, Guanti G, et al. Molecular and clinical characteristics in 46 families affected with Peutz–Jeghers syndrome. Dig Dis Sci. 2007;52:1924–33.  https://doi.org/10.1007/s10620-006-9435-3.CrossRefPubMedGoogle Scholar
  28. 28.
    Plawski A, Cichy W, Klincewicz B. Juvenile polyposis syndrome. Arch Med Sci. 2014;10:570–7.  https://doi.org/10.5114/aoms.2014.43750.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chen H-M, Fang J-Y. Genetics of the hamartomatous polyposis syndromes: a molecular review. Int J Color Dis. 2009;24:865–74.  https://doi.org/10.1007/s00384-009-0714-2.CrossRefGoogle Scholar
  30. 30.
    Latchford A, Neale K, Phillips R, Clark S. Juvenile polyposis syndrome: a study of genotype, phenotype, and long-term outcome. Dis Colon Rectum. 2012;55:1038–43.  https://doi.org/10.1097/DCR.0b013e31826278b3.CrossRefPubMedGoogle Scholar
  31. 31.
    Brosens LA, Langeveld D, Arnout W, et al. Juvenile polyposis syndrome. World J Gastroenterol. 2011;17:4839–44.  https://doi.org/10.3748/wjg.v17.i44.4839.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kapetanakis A, Vini D, Plitsis G. Solitary juvenile polyps in children and colon cancer. Hepato-Gastroenterology. 1996;43:1530–1.PubMedGoogle Scholar
  33. 33.
    Nugent KP, Talbot IC, Hodgson SV, Phillips RK. Solitary juvenile polyps: not a marker for subsequent malignancy. Gastroenterology. 1993;105:698–700.CrossRefGoogle Scholar
  34. 34.
    Coburn M, Pricolo V, DeLuca F, Bland K. Malignant potential in intestinal juvenile polyposis syndromes. Ann Surg Oncol. 1995;2:386–91.CrossRefGoogle Scholar
  35. 35.
    Sachatello CR, Griffen WO. Hereditary polypoid diseases of the gastrointestinal tract: a working classification. Am J Surg. 1975;129:198–203.CrossRefGoogle Scholar
  36. 36.
    Sachatello CR, Hahn IS, Carrington CB. Juvenile gastrointestinal polyposis in a female infant: report of a case and review of the literature of a recently recognized syndrome. Surgery. 1974;75:107–14.PubMedGoogle Scholar
  37. 37.
    Alimi A, Weeth-Feinstein LA, Stettner A, et al. Overlap of juvenile polyposis syndrome and cowden syndrome due to de novo chromosome 10 deletion involving BMPR1A and PTEN: implications for treatment and surveillance. Am J Med Genet. 2015;167:1305–8.  https://doi.org/10.1002/ajmg.a.36876.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Delnatte C, Sanlaville D, Mougenot J-F, et al. Contiguous gene deletion within chromosome arm 10q is associated with juvenile polyposis of infancy, reflecting cooperation between the BMPR1A and PTEN tumor-suppressor genes. Am J Hum Genet. 2006;78:1066–74.  https://doi.org/10.1086/504301.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Menko F, Kneepkens C, De Leeuw N, et al. Variable phenotypes associated with 10q23 microdeletions involving the PTEN and BMPR1A genes. Clin Genet. 2008;74:145–54.  https://doi.org/10.1111/j.1399-0004.2008.01026.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Merg A, Howe JR. Genetic conditions associated with intestinal juvenile polyps. Am J Med Genet. 2004;129:44–55.  https://doi.org/10.1002/ajmg.c.30020.CrossRefGoogle Scholar
  41. 41.
    Desai D, Murday V, Phillips R, et al. A survey of phenotypic features in juvenile polyposis. J Med Genet. 1998;35:476–81.CrossRefGoogle Scholar
  42. 42.
    Aytac E, Sulu B, Heald B, et al. Genotype-defined cancer risk in juvenile polyposis syndrome. Br J Surg. 2015;102:114–8.  https://doi.org/10.1002/bjs.9693.CrossRefPubMedGoogle Scholar
  43. 43.
    Friedl W, Uhlhaas S, Schulmann K, et al. Juvenile polyposis: massive gastric polyposis is more common in MADH4 mutation carriers than in BMPR1A mutation carriers. Hum Genet. 2002;111:108–11.  https://doi.org/10.1007/s00439-002-0748-9.CrossRefPubMedGoogle Scholar
  44. 44.
    Aretz S, Stienen D, Uhlhaas S, et al. High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet. 2007;44:702–9.  https://doi.org/10.1136/jmg.2007.052506.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    O’Malley M, LaGuardia L, Kalady MF, et al. The prevalence of hereditary hemorrhagic telangiectasia in juvenile polyposis syndrome. Dis Colon Rectum. 2012;55:886–92.  https://doi.org/10.1097/DCR.0b013e31825aad32.CrossRefPubMedGoogle Scholar
  46. 46.
    Jass J, Williams C, Bussey H, Morson B. Juvenile polyposis--a precancerous condition. Histopathology. 1988;13:619–30.CrossRefGoogle Scholar
  47. 47.
    Brosens LA, van Hattem A, Hylind LM, et al. Risk of colorectal cancer in juvenile polyposis. Gut. 2007;56:965–7.  https://doi.org/10.1136/gut.2006.116913.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Howe J, Mitros F, Summers R. The risk of gastrointestinal carcinoma in familial juvenile polyposis. Ann Surg Oncol. 1998;5:751–6.CrossRefGoogle Scholar
  49. 49.
    Ma C, Giardiello FM, Montgomery EA. Upper tract juvenile polyps in juvenile polyposis patients: dysplasia and malignancy are associated with foveolar, intestinal, and pyloric differentiation. Am J Surg Pathol. 2014;38:1618–26.  https://doi.org/10.1097/PAS.0000000000000283.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Walpole IR, Cullity G, Opitz JM, Reynolds JF. Juvenile polyposis: a case with early presentation and death attributable to adenocarcinoma of the pancreas. Am J Med Genet. 1989;32:1–8.  https://doi.org/10.1002/ajmg.1320320102.CrossRefPubMedGoogle Scholar
  51. 51.
    Cairns SR, Scholefield JH, Steele RJ, et al. Guidelines for colorectal cancer screening and surveillance in moderate and high risk groups (update from 2002). Gut. 2010;59:666–89.  https://doi.org/10.1136/gut.2009.179804.CrossRefPubMedGoogle Scholar
  52. 52.
    Syngal S, Brand RE, Church JM, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110:223–62.  https://doi.org/10.1038/ajg.2014.435.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Faughnan M, Palda V, Garcia-Tsao G, et al. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J Med Genet. 2011;48:73–87.  https://doi.org/10.1136/jmg.2009.069013.CrossRefPubMedGoogle Scholar
  54. 54.
    Howe J, Sayed M, Ahmed A, et al. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet. 2004;41:484–91.  https://doi.org/10.1136/jmg.2004.018598.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Daly MB, Pilarski R, Axilbund J, et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment:Breast and Ovarian, Version 2.2017 J Natl Compr Canc Netw 2017;15:9–20 doi: 10.6004/jnccn.2017.0003.CrossRefGoogle Scholar
  56. 56.
    Bannayan G. Lipomatosis, angiomatosis, and macrencephalia. A previously undescribed congenital syndrome. Arch Pathol. 1971;92:1–5.PubMedGoogle Scholar
  57. 57.
    Eng C. Will the real Cowden syndrome please stand up: revised diagnostic criteria. J Med Genet. 2000;37:828–30.  https://doi.org/10.1136/jmg.37.11.828.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ngeow J, Eng C. PTEN hamartoma tumor syndrome: clinical risk assessment and management protocol. Methods. 2015;77–78:11–9.  https://doi.org/10.1016/j.ymeth.2014.10.011.CrossRefPubMedGoogle Scholar
  59. 59.
    Nelen MR, Padberg GW, Peeters EAJ, et al. Localization of the gene for Cowden disease to chromosome 10q22–23. Nat Genet. 1996;13:114–6.  https://doi.org/10.1038/ng0596-114.CrossRefPubMedGoogle Scholar
  60. 60.
    Uppal S, Mistry D, Coatesworth A. Cowden disease: a review. Int J Clin Pract. 2007;61:645–52.  https://doi.org/10.1111/j.1742-1241.2006.00896.x.CrossRefPubMedGoogle Scholar
  61. 61.
    Coriat R, Mozer M, Caux E, et al. Endoscopic findings in Cowden syndrome. Endoscopy. 2011;43:723–6.  https://doi.org/10.1055/s-0030-1256342.CrossRefPubMedGoogle Scholar
  62. 62.
    Heald B, Mester J, Rybicki L, et al. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology. 2010;139:1927–33.  https://doi.org/10.1053/j.gastro.2010.06.061.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Levi Z, Baris HN, Kedar I, et al. Upper and lower gastrointestinal findings in PTEN mutation-positive Cowden syndrome patients participating in an active surveillance program. Clin Transl Gastroenterol. 2011;2:e5.  https://doi.org/10.1038/ctg.2011.4.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Stanich PP, Owens VL, Sweetser S, et al. Colonic polyposis and neoplasia in Cowden syndrome. Mayo Clin Proc. 2011;86:489–92.  https://doi.org/10.4065/mcp.2010.0816.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Tan M-H, Mester J, Peterson C, et al. A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet. 2011;88:42–56.  https://doi.org/10.1016/j.ajhg.2010.11.013.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bubien V, Bonnet F, Brouste V, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013;50:255–63.  https://doi.org/10.1136/jmedgenet-2012-101339.CrossRefPubMedGoogle Scholar
  67. 67.
    Ngeow J, Mester J, Rybicki LA, et al. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96:E2063–71.  https://doi.org/10.1210/jc.2011-1616.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Nieuwenhuis MH, Kets CM, Murphy-Ryan M, et al. Cancer risk and genotype–phenotype correlations in PTEN hamartoma tumor syndrome. Familial Cancer. 2014;13:57–63.  https://doi.org/10.1007/s10689-013-9674-3.CrossRefPubMedGoogle Scholar
  69. 69.
    Tan M, Mester J, Ngeow J, et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18:400–7.  https://doi.org/10.1158/1078-0432.CCR-11-2283.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sherman SK, Maxwell JE, Qian Q, et al. Esophageal cancer in a family with hamartomatous tumors and germline PTEN frameshift and SMAD7 missense mutations. Cancer Genet. 2015;208:41–6.  https://doi.org/10.1016/j.cancergen.2014.11.002.CrossRefPubMedGoogle Scholar
  71. 71.
    NCCN. Genetic/familial high-risk assessment: breast and ovarian. Natl Compr Cancer Netw. 2016.Google Scholar
  72. 72.
    Ngeow J, Liu C, Zhou K, et al. Detecting germline PTEN mutations among at-risk patients with cancer: an age- and sex-specific cost-effectiveness analysis. J Clin Oncol. 2015;33:2537–44.  https://doi.org/10.1200/JCO.2014.60.3456.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ngeow J, Stanuch K, Mester JL, et al. Second malignant neoplasms in patients with Cowden syndrome with underlying germline PTEN mutations. J Clin Oncol. 2014;32:1818–24.  https://doi.org/10.1200/JCO.2013.53.6656.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gorlin RJ, Cohen MM, Condon LM, Burke BA. Bannayan-Riley-Ruvalcaba syndrome. Am J Med Genet. 1992;44:307–14.  https://doi.org/10.1002/ajmg.1320440309.CrossRefPubMedGoogle Scholar
  75. 75.
    Marsh D, Kum J, Lunetta K, et al. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet. 1999;8:1461–72.CrossRefGoogle Scholar
  76. 76.
    Mester J, Eng C. Estimate of de novo mutation frequency in probands with PTEN hamartoma tumor syndrome. Genet Med. 2012;14:819–22.  https://doi.org/10.1038/gim.2012.51.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ni Y, He X, Chen J, et al. Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet. 2012;21:300–10.  https://doi.org/10.1093/hmg/ddr459.CrossRefPubMedGoogle Scholar
  78. 78.
    Ni Y, Zbuk KM, Sadler T, et al. Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am J Hum Genet. 2008;83:261–8.  https://doi.org/10.1016/j.ajhg.2008.07.011.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Nizialek EA, Mester JL, Dhiman VK, et al. KLLN epigenotype-phenotype associations in Cowden syndrome. Eur J Hum Genet. 2015;23:1538–43.  https://doi.org/10.1038/ejhg.2015.8.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Colby S, Yehia L, Niazi F, et al. Exome sequencing reveals germline gain-of-function EGFR mutation in an adult with Lhermitte-Duclos disease. Cold Spring Harb Mol Case Stud. 2016;2:a001230.  https://doi.org/10.1101/mcs.a001230.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yehia L, Niazi F, Ni Y, et al. Germline heterozygous variants in SEC23B are associated with Cowden syndrome and enriched in apparently sporadic thyroid cancer. Am J Hum Genet. 2015;97:661–76.  https://doi.org/10.1016/j.ajhg.2015.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ni Y, Seballos S, Fletcher B, et al. Germline compound heterozygous poly-glutamine deletion in USF3 may be involved in predisposition to heritable and sporadic epithelial thyroid carcinoma. Hum Mol Genet. ddw382. 2016.  https://doi.org/10.1093/hmg/ddw382.
  83. 83.
    Schwartz R. Basal-cell-nevus syndrome and gastrointestinal polyposis. N Engl J Med. 1978;299:49.  https://doi.org/10.1056/NEJM197807062990118.CrossRefPubMedGoogle Scholar
  84. 84.
    Plesec T, Brown K, Allen C, et al. Clinicopathological features of a kindred with SCG5-GREM1–associated hereditary mixed polyposis syndrome. Hum Pathol. 2017;60:75–81.  https://doi.org/10.1016/j.humpath.2016.10.002.CrossRefPubMedGoogle Scholar
  85. 85.
    Jaeger E, Leedham S, Lewis A, et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet. 2012;44:699–703.  https://doi.org/10.1038/ng.2263.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Thomas HJ, Whitelaw SC, Cottrell SE, et al. Genetic mapping of hereditary mixed polyposis syndrome to chromosome 6q. Am J Hum Genet. 1996;58:770–6.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Cao X, Eu KW, Kumarasinghe MP, et al. Mapping of hereditary mixed polyposis syndrome (HMPS) to chromosome 10q23 by genomewide high-density single nucleotide polymorphism (SNP) scan and identification of BMPR1A loss of function. J Med Genet. 2006;43:e13.  https://doi.org/10.1136/jmg.2005.034827.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    O’Riordan JM, O’Donoghue D, Green A, et al. Hereditary mixed polyposis syndrome due to a BMPR1A mutation. Color Dis. 2009;12:570–3.  https://doi.org/10.1111/j.1463-1318.2009.01931.x.CrossRefGoogle Scholar
  89. 89.
    Agaimy A, Vassos N, Croner RS. Gastrointestinal manifestations of neurofibromatosis type 1 (Recklinghausen’s disease): clinicopathological spectrum with pathogenetic considerations. Int J Clin Exp Pathol. 2012;5:852–62.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Moline J, Eng C. Multiple endocrine neoplasia type 2: an overview. Genet Med. 2011;13:755–64.  https://doi.org/10.1097/GIM.0b013e318216cc6d.CrossRefPubMedGoogle Scholar
  91. 91.
    Uusitalo E, Rantanen M, Kallionpää RA, et al. Distinctive cancer associations in patients with Neurofibromatosis type 1. J Clin Oncol. 2016;34:1978–86.  https://doi.org/10.1200/JCO.2015.65.3576.CrossRefPubMedGoogle Scholar
  92. 92.
    Walker L, Thompson D, Easton D, et al. A prospective study of neurofibromatosis type 1 cancer incidence in the UK. Br J Cancer. 2006;95:233–8.  https://doi.org/10.1038/sj.bjc.6603227.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Wells SA, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the Management of Medullary Thyroid Carcinoma. Thyroid. 2015;25:567–610.  https://doi.org/10.1089/thy.2014.0335.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joanne Ngeow
    • 1
    • 2
    • 3
  • Eliza Courtney
    • 1
  • Kiat Hon Lim
    • 4
  • Charis Eng
    • 3
    • 5
    • 6
    • 7
    • 8
  1. 1.Division of Medical OncologyNational Cancer CentreSingaporeSingapore
  2. 2.Oncology Academic Clinical Program, Duke-NUS Graduate Medical SchoolSingaporeSingapore
  3. 3.Genomic Medicine Institute, Cleveland ClinicClevelandUSA
  4. 4.Division of PathologySingapore General HospitalSingaporeSingapore
  5. 5.Lerner Research Institute, Cleveland ClinicClevelandUSA
  6. 6.Taussig Cancer Institute, Cleveland ClinicClevelandUSA
  7. 7.Department of Genetics and Genome Sciences, Case Western Reserve University School of MedicineClevelandUSA
  8. 8.Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve UniversityClevelandUSA

Personalised recommendations