Skip to main content

Barasaurus Squamation

  • Chapter
  • First Online:
Deep Time Analysis

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

New specimens of the procolophonoid parareptile Barasaurus from the Permo-Triassic Sakamena Group of Madagascar show skin preservation in the form of scale patches. Based on its appendicular skeletal anatomy, Barasaurus was an aquatic form, the only known aquatic procolophonoid. Its squamation consisting of large (up to 4 mm greatest dimension on an animal approximately 30 cm in length), skink-like ventral scales suggest that this ventral scale configuration was well suited for existence in an aquatic habitat. The Barasaurus lifestyle was comparable to that of the crab-eating modern Madagascan skink (Amphiglossus astrolabi). Although they had the potential to do so since they survived the Permo-Triassic mass extinction, barasaurian procolophonoids did not diversify into a major group of Mesozoic Marine tetrapods.

Naturalists spend their time in vain describing new species, obsessing over all the nuances and tiny details of their variation to amass an immense list of described species, then describing numerous genera, and continuously changing the methods of comparison for classifying them—but if the philosophy of science is neglected, any progress will be insubstantial and the entire effort will be vacuous.

Lamarck, Philosophie zoologique

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams TL, Fiorillo AR (2010) Platypterygius Huene, 1922 (Ichthyosauria, Ophthalmosauridae) from the Late Cretaceous of Texas, USA. Palaeontol Electron 14(3):19A:12p

    Google Scholar 

  • Ahlberg PE (1992) Coelacanth fins and evolution. Nature 358:459

    Article  Google Scholar 

  • Anderson HM, Cruickshank ARI (1978) The biostratigraphy of the Permian and the Triassic. Part 5. A review of the classification and distribution of Permo-Triassic tetrapods. Palaont afr 21:15–44

    Google Scholar 

  • Battistini R, Richard-Vindard G (1972) Biogeography and ecology in Madagascar. Junk, The Hague

    Book  Google Scholar 

  • Bickelmann C et al (2009) The enigmatic diapsid Acerosodontosaurus piveteaui (Reptilia: Neodiapsida) from the upper Permian of Madagascar and the paraphyly of “younginiform” reptiles. Can J Earth Sci 46:651–661

    Article  Google Scholar 

  • Blackburn DG, Flemming AF (2011) Invasing implantation and intimate placental associations in a placentotrophic African lizard, Trachylepis ivensi (Scincidae). J Morphology 273:137–159

    Article  Google Scholar 

  • Boule M (1908) Sur l’existence d’une faune et d’une flore permiennes à Madagascar. C R Acad Sci 147:502–504

    Google Scholar 

  • Boule M (1910) Sur le Permien de Madagascar. Bull Soc géol Fr 4e sér 10:314–315

    Google Scholar 

  • deBraga M (2003) The postcranial skeleton, phylogenetic position, and probable lifestyle of the early Triassic reptile Procolophon trigoniceps. Can J Earth Sci 40:527–556

    Article  Google Scholar 

  • deBraga M, Reisz RR (1996) The early Permian reptile Acleistorhinus pterticus and its phylogenetic position. J Vetebr Paleontol 16:384–395

    Article  Google Scholar 

  • Camp CL (1945a) Prolacerta and the protorosaurian reptiles. Part 1. Am J Sci 243:17–32

    Article  Google Scholar 

  • Camp CL (1945b) Prolacerta and the protorosaurian reptiles. Part 2. Am J Sci 243:84–101

    Article  Google Scholar 

  • Camp CL (1980) Large ichthyosaurs from the upper Triassic of Nevada. Paleontographica Abteilung A 170:139–200

    Google Scholar 

  • Carroll RL (1981) Plesiosaur ancestors from the upper Permian of Madagasar. Phil Trans R Soc London B 293:315–383

    Article  Google Scholar 

  • Carroll RL, Dong Z-M (1991) Hupehsuchus, an enigmatic reptile from the Triassic of China, and the problem of establishing relationships. Phil Trans R Soc London B 331:131–153

    Article  Google Scholar 

  • Cisneros JC et al (2004) A procolophonoid reptile with temporal fenestration from the middle Triassic of Brazil. Proc R Soc B Biol Sci 271(1547):1541–1546

    Article  Google Scholar 

  • Clack JA (2002) An early tetrapod from ‘Romer’s gap. Nature 418(6893):72–76

    Article  Google Scholar 

  • Clement G (1999) The actinistian (Sarcopterygii) Piveteauia madagascariensis Lehman from the lower Triassic of northwestern Madagascar: a redescription on the basis of new material. J Vert Paleo 19(2):234–242

    Article  Google Scholar 

  • Currie PJ (1980) A new younginid (Reptilia: Eosuchia) from the upper Permian of Madagascar. Canadian. J Earth Sci 17:500–511

    Google Scholar 

  • Currie PJ (1981) Hovasaurus boulei, an aquatic eosuchian from the upper Permian of Madagascar. Palaont afr 21:99–168

    Google Scholar 

  • Davis K (2012) Lower Permian vertebrates of Oklahoma, Waurika, vol 1. Kieran Davis, Wakefield

    Google Scholar 

  • Davis K (2013) Lower Permian vertebrates of Oklahoma, Richards Spur, vol 2. Kieran Davis, Wakefield

    Google Scholar 

  • Estes R (1983) Sauria Terrestria, Amphisbaenia. Handbuch der Paläoherpetologie, Part 10A. Gustav Fisher Verlag, Stuttgart

    Google Scholar 

  • Fröbish NB et al (2013) Macropredatory ichthyosaur from the middle Triassic and the origin of modern trophic networks. Proc Nat Acad Sci (USA) 110(4):1393–1397

    Article  Google Scholar 

  • Glaw F, Vences M (2007) A field guide to the amphibians and reptiles of Madagascar, 3rd edn. Vences and Glaw Verlag, Cologne

    Google Scholar 

  • Gomez S (2002) Crisóstomo Martinez, 1638-1694: the discoverer of trabecular bone. Endocrine 17(1):3–4

    Article  Google Scholar 

  • Halstead L (1982) The search for the past. Doubleday, Garden City/New York

    Google Scholar 

  • Haughton S-H (1924) On reptilian remains from the Karoo beds of East Africa. Q J Geol Soc Lond 80:1–11

    Article  Google Scholar 

  • Hedges SB (2014) The high-level classification of skinks (Reptilia, Squamata, Scincomorpha). Zootaxa 3765:317–338

    Article  Google Scholar 

  • Holterhoff PF et al (2013) Artinskian (early Permian) conodonts from the Elm Creek limestone, a heterozoan carbonate sequence on the eastern shelf of the Midland Basin, West Texas, USA. New Mex Museum Nat Hist Sci Bull 60:109–119

    Google Scholar 

  • Houssaye A et al (2014) A new look at ichthyosaur long bone microanatomy and histology: implications for their adaptation to an aquatic life. PLoS One 9(4):e95637. https://doi.org/10.1371/journl.pone.0095637

    Article  Google Scholar 

  • von Huene F (1940) Osteologie und systematische Stellung von Mesosaurus. Palaeontolographica Abteilung A Palaeozoologie-Stratigraphie 92:45–58

    Google Scholar 

  • Jiang D-Y et al (2016) A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction. Sci Rep 6(26232). https://doi.org/10.1038/srep26232

  • Johnson GD (1988) Abnormal captorhinomorph vertebra from the lower Permian of north-central Texas. J Vetebr Paleontol 8:19A

    Google Scholar 

  • Ketchum HF, Barrett PM (2004) New reptile material from the lower Triassic of Madagascar: implications for the Permian-Triassic extinction event. Can J Earth Sci 41:1–8

    Article  Google Scholar 

  • Kiprijanoff W (1883) Studien über die fossilen Reptilien Russlands. III. Theil. Gruppe Thaumatosauria N. aus der Kreide-Formation und dem Moskauer Jura. Mémoires de L’académie impériale de Sciences de St-Petersbourg 31:1–29

    Google Scholar 

  • Klinkhamer AJ et al (2017) Digital dissection and three-dimensional interactive models of limb musculature in the Australian estuarine crocodile (Crocodylus porosus). PLoS One 12(4):e0175079. https://doi.org/10.1371/journal.pone.0175079

    Article  Google Scholar 

  • Laurin M, Reisz RR (1995) A reevaluation of early amniote phylogeny. Zool J Linnean Soc 113(2):165–223

    Article  Google Scholar 

  • Lee MSY (2013) Turtle origins: insights from phylogenetic retrofitting and molecular scaffolds. J Evol Biol 26(12):2729–2738

    Article  Google Scholar 

  • Liebe L, Hurum JH (2012) Gross internal structure and microstructure of plesiosaur limb bones from the late Jurassic, central Spitsbergen. Nor J Geol 92:285–309

    Google Scholar 

  • Lindgren J et al (2009) Skin of the Cretaceous mosasaur Plotosaurus: implications for aquatic adaptations in giant marine reptiles. Biol Lett 5(4). https://doi.org/10.1098/rsbl.2009.0097

  • Lindgren J et al (2010) Convergent evolution in aquatic tetrapods: insights from an exceptional fossil mosasaur. PLoS One 5(8):e11998. https://doi.org/10.1371/journal.pone.0011998

    Article  Google Scholar 

  • Lindgren J et al (2011) Three-dimensionally preserved integument reveals hydrodynamic adaptations in the extinct marine lizard Ectenosaurus (Reptilia, Mosasauridae). PLoS One 6(11):e27343. https://doi.org/10.1271/journal.pone.0027343

    Article  Google Scholar 

  • Maisch MW, Matzke AT (2000) The Ichthyosauria. Stuttgarter Beitr Naturk Ser B 298:1–159

    Google Scholar 

  • Maisey JG et al (2017) Pectoral morphology in Doliodus: bridging the ‘acanthodian’-chondrichthyan divide. Am Mus Novit 3875:1–15

    Article  Google Scholar 

  • Martinelli AG et al (2016) Owenettids and procolophonids from the lower Keuper shed new light on the diversity of parareptiles in the German middle Triassic. J Paleontol 90(1):92–101

    Article  Google Scholar 

  • Mayor A (2000) The first fossil hunters: paleontology in Greek and Roman times. Princeton University Press, Princeton

    Google Scholar 

  • McCoy VE (2015) The formation of concretions and their role in fossilization. Ph.D. Dissertation, Yale University

    Google Scholar 

  • McMenamin MAS (2005) Microbial influence and environmental convergence in marine (Proterozoic) and lacustrine (Jurassic) depositional settings. Geol Soc America Abstr Prog 37(1):7

    Google Scholar 

  • McMenamin MAS (2016) Dynamic paleontology. Springer, Cham

    Book  Google Scholar 

  • McMenamin MAS, Hussey MC (2015) Triassic coprolites from the Luning formation, central Nevada. Geol Soc Am Abstr Prog 47(7):827

    Google Scholar 

  • McMenamin MAS et al (2016) Ichthyosaur coprolite with nautiloid: new data on the diet of Shonisaurus. Geol Soc Am Abstr Prog 48(7). https://doi.org/10.1130/abs/2016AM-284943

  • Meckert D (1995) The procolophonid Barasaurus and phylogeny of early amniotes. Ph.D. Dissertation, McGill University, Quebec

    Google Scholar 

  • Merck J (1997) A phylogenetic analysis of euryapsid reptiles. Ph.D. Dissertation, University of Texas at Austin

    Google Scholar 

  • Motani R et al (2015) A basal ichthyosauriform with a short snout from the lower Triassic of China. Nature 517:485–488

    Article  Google Scholar 

  • Moy-Thomas JA (1935) The coelacanth fishes from Madagascar. Geol Mag 72:213–227

    Article  Google Scholar 

  • Moy-Thomas JA (1937) The Carboniferous coelacanth fishes of great Britain and Ireland. J Zool 107:383–415

    Google Scholar 

  • Naish D (2014) Skinks, skinks, skinks! Scientific American. https://blogs.scientificamerican.com/tetrapod-zoology/skinks-skinks-skinks/

  • Naish D (2016) The Madagascan skink Amphiglossus eats crabs. Scientific American. https://blogs.scientificamerican.com/tetrapod-zoology/the-madagascan-skink-amphiglossus-eats-crabs/

  • Perrier de la Bathie H (1919) Au sujet des plus anciennes couches de la série sédimentaire du versant occidental. Bull Acad malgache 4:218–221

    Google Scholar 

  • Piñeiro G et al (2012) Unusual environmental conditions preserve a Permian mesosaur-bearing Konservat-Lagerstätte from Uruguay. Acta Palaeontol Pol 57(2):299–318

    Article  Google Scholar 

  • Piveteau J (1926) Paléontologie de Madagascar, XIII. Amphibiens et reptiles permiens. Annales de Paléontologie 15:53–180

    Google Scholar 

  • Piveteau J (1955) Existence d’un reptile du groupe Procolophonides á Madagascar. Conséquences stratigraphiques et paléontologiques. Comptes rendus hebdomadaires de séances de l’Académie des. Science 241:1325–1327

    Google Scholar 

  • Pyron RA et al (2013) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 13:93. https://doi.org/10.1186/1471-2148-13-93

    Article  Google Scholar 

  • Reisz RR, Scott D (2002) Owenetta kitchingorum, n. sp., a small parareptile (Procolophinia: Owenettidae) from the lower Triassic of South Africa. J Vertebr Paleontol 38:224–256

    Google Scholar 

  • Reisz et al (2011) A new early Permian reptile and its significance in early diapsid evolution. Proc R Soc B 278:3731–3737

    Article  Google Scholar 

  • Rieppel O (1989) Helveticosaurus zollingeri Peyer (Reptilia, Diapsida) skeletal paedomorphosis, functional anatomy, and systematic affinities. Palaeontographica 208:123–152

    Google Scholar 

  • Robinson JA (1975) The locomotion of plesiosaurs. N Jb Geol Paläont Abh 149:286–332

    Google Scholar 

  • Rouwet D et al (2016) Cameroon’s Lake Nyos gas burst: 30 years later. Eos 97. https://doi.org/10.1029/2016EO055627

  • Ruta M, Wills MA (2016) Comparable disparity in the appendicular skeleton across the fish-tetrapod transition, and the morphological gap between fish and tetrapod postcrania. Palaeontology 59(2):249–267

    Article  Google Scholar 

  • Ruta M et al (2011) Amniotes through major biological crises: faunal turnover among parareptiles and the end-Permian mass extinction. Palaeontology 54(5):1117–1137

    Article  Google Scholar 

  • Sachs S, Kear BP (2015) Postcranium of the paradigm elasmosaurid plesiosaurian Libonectes morgani (Welles, 1949). Geol Mag 152(4). https://doi.org/10.1017/S0016756814000636

  • Scheyer TM et al (2017) A new, exceptionally preserved juvenile specimen of Eusaurosphargis dalsassoi (Diapsida) and implications for Mesozoic marine diapsid phylogeny. Sci Rep 7. https://doi.org/10.1038/s41598-017-04514-x

  • Schlüter T (2008) Geological atlas of Africa: with notes on stratigraphy, tectonics, economic geology and geosites of each country. Springer, Berlin/London

    Google Scholar 

  • Scott NJ et al (2006) The genera Boiruna and Clelia (Serpentes: Pseudoboini) in Paraguay and Argentina. Pap Avulsos Zool (São Paulo) 46(9):77–105

    Article  Google Scholar 

  • Seymour RS et al (1987) Effect of capture on the physiology of Crocodylus porosus. In: Webb GJW et al (eds) Wildlife management: crocodiles and alligators. Surrey Beatty, Clipping Norton, pp 253–257

    Google Scholar 

  • Sharpe PT (2001) Fish scale development: hair today, teeth and scales yesterday? Curr Biol 11(18):R751–R752

    Article  Google Scholar 

  • Shubin N et al (1997) Fossils, genes and the evolution of animal limbs. Nature 388:639–648

    Article  Google Scholar 

  • Smith RMH (2000) Sedimentology and taphonomy of Late Permian vertebrate fossil localities in southwestern Madagascar. Palaeontol Afr 36:25–41

    Google Scholar 

  • Steyer SJ (2002) The first articulated trematosaur ‘amphibian’ from the lower Triassic of Madagascar: implications for the phylogeny of the group. Palaeontology 14(4):771–793

    Article  Google Scholar 

  • Sues H-D, Reisz RR (2008) Anatomy and phylogenetic relationships of Sclerosaurus armatus (Amniota: Parareptilia) from the Buntsandstein (Triassic) of Europe. J Vertebrate Paleont 28(4):1031–1042

    Article  Google Scholar 

  • Suess E (1885) Das Antlitz der Erde, v. 1. G. Greytag, Leipzig

    Google Scholar 

  • Szczygielski T et al (2017) The oldest record of aquatic amniote congenital scoliosis. PLoS One 12(9):e0185338. https://doi.org/10.1371/journal.pone.0185338

    Article  Google Scholar 

  • Takai F (1976) On Atherstonia madagascariensis, a new species of palaeoniscoid fish from Madagascar. Proc Japan Acad 52(1):25–28

    Google Scholar 

  • Tarlach G (2017) When we left water. Discover 38(6):44–47

    Google Scholar 

  • Thomson TJ, Droser ML (2015) Swimming reptiles make their mark in the early Triassic: delayed ecological recovery increased the preservation potential of vertebrate swim tracks. Geology 45(7). https://doi.org/10.1130/G36332.1

  • Tortochaux F (1949) Étude general du Groupe de la Sakamena dans le sud-ouest de Madagascar. Républ Madagascan, Trav Bur Géol 7:1–25

    Google Scholar 

  • Tsuji LA et al (2013) Ruhuhuaria reiszi, a new procolophonoid reptile from the Triassic Ruhuhu Basin of Tanzania. Comptes Rendus Palevol 12(7–8):487–494

    Article  Google Scholar 

  • Wagner GP, Gauthier JA (1999) 1,2,3=2,3,4: a solution to the problem of the homology of the digits in the avian hand. Proc Nat Acad Sci (USA) 96(9):5111–5116

    Article  Google Scholar 

  • Witzmann F (2014) Congenital malformations of the vertebral column in ancient amphibians. J Vet Med Ser C Anat Histol Embryol 43:90–102

    Article  Google Scholar 

  • Yoshida H et al (2015) Early post-mortem formation of carbonate concretions around tusk-shells over week-month timescales. Sci Rep 5:14123. https://doi.org/10.1038/srep14123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McMenamin, M.A.S. (2018). Barasaurus Squamation. In: Deep Time Analysis. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-74256-4_8

Download citation

Publish with us

Policies and ethics