Skip to main content

Trace Fossil Geometry

  • Chapter
  • First Online:
Deep Time Analysis

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 964 Accesses

Abstract

The ichnofossils Treptichnus and Multina provide clues about the development of behavior in burrowing metazoans. A particular behavior type may be condensed and superimposed on the original burrowing pattern of programmed behavior. For example, a fine scale sinusoidal pattern may be superimposed on a large scale sinusoidal pattern. Side to side small scale branching may be superimposed on side to side main burrow elongate loops. Both burrow types are convergent behaviors with the same function, namely, more thorough deposit feeding in deep water sediments and/or low organic content sediments where the animal is required to thoroughly sift the sediment and must avoid reprocessing sediment that has been already fed upon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blagoderov V et al (2007) How time flies for flies: diverse diptera from the Triassic of Virginia and early radiation of the order. Am Mus Novit 3572:1–39

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2003) Early colonization of the deep sea: ichnological evidence of deep-marine benthic ecology from the early Cambrian of northwest Argentina. PALAIOS 18:572–581

    Article  Google Scholar 

  • Debrenne F et al (1989) Lower Cambrian bioconstructions in northwestern Mexico (Sonora). Depositional setting, paleoecology and systematics of archaeocyaths. Geobios 22(2):137–195

    Article  Google Scholar 

  • Fedonkin MA (1978) Drevneishie iskopaemy sledi i puti evoluutsi povendeniya grynotoedov. Paleontol Zh 2:106–111

    Google Scholar 

  • Getty PR et al (2016) A new reconstruction of continental Treptichnus based on exceptionally preserved material from the Jurassic of Massachusetts. J Paleontol 90(2):269–278

    Article  Google Scholar 

  • Grande L (1980) Paleontology of the Green River Formation, with a review of the fish fauna. Geol Surv Wyoming Bull 63:1–333

    Google Scholar 

  • Li G-Q et al (1997) The species of †Phareodus (Teleostei: Osteoglossidae) from the Eocene of North America and their phylogenetic relationships. J Vert Paleont 17(3):487–450

    Article  Google Scholar 

  • McMenamin MAS (2005) Microbial influence and environmental convergence in marine (Proterozoic) and lacustrine (Jurassic) depositional settings. Geol Soc America Abstr Prog 37(1):7

    Google Scholar 

  • McMenamin MAS (1998) The garden of Ediacara: discovering the first complex life. Columbia University Press, New York

    Google Scholar 

  • McMenamin MAS (2016) Dynamic paleontology: using quantification and other tools to decipher the history of life. Springer, Cham

    Book  Google Scholar 

  • McMenamin MAS, Schulte McMenamin DL (1990) The emergence of animals: the Cambrian breakthrough. Columbia University Press, New York

    Google Scholar 

  • Olsen P et al (2003) Causes and consequences of the Triassic-Jurassic mass extinction as seen from the Hartford Basin. In: Brady JB, Cheney JT (eds) Guidebook for field trips in the five college region. Five College Departments of Geology and Geography, Amherst/Northampton/Massachusetts, p B5-1-B5-41

    Google Scholar 

  • Seilacher A (1956) Der Beginn des Kambriums als biologische Wende. Neues Jahrb Geol Palaontol Abh 108:155–180

    Google Scholar 

  • Seilacher A (1967) Bathymetry of trace fossils. Mar Geol 5:413–428

    Article  Google Scholar 

  • Seilacher A (1974) Flysch trace fossils: evolution of behavioral diversity in the deep-sea. Neues Jahrbuch für Geologie und Palaontologie, Monatshefte 1974:233–245

    Google Scholar 

  • Weber B et al (2007) Precambrian-Cambrian trace fossils from the Yangtze platform (South China) and the early evolution of bilaterian lifestyles. Pal Pal Pal 254:328–349

    Google Scholar 

  • Zapata LP et al (2017) Multina isp. from the late Triassic Luning Formation, Nevada. Ichnos 24(1):64–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McMenamin, M.A.S. (2018). Trace Fossil Geometry. In: Deep Time Analysis. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-74256-4_5

Download citation

Publish with us

Policies and ethics