Skip to main content

Shuram Excursion

  • Chapter
  • First Online:
Deep Time Analysis

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The Shuram excursion represents the greatest negative carbon isotopic excursion in earth history, and provides an important chemostratigraphic marker horizon of global extent. The excursion is linked to the second great oxygenation event in earth history, an oxygen crisis that resulted in a transition from sulfidic oceans to a marine realm rich in sulfate. The Shuram excursion (560–550 Ma) is represented in Sonora, México by the Clemente oolite of the Clemente Formation. Ediacaran fossils (such as the Clemente biota of Unit 4 of the Clemente Formation) occur in rocks deposited below the excursion. The age of the Clemente Ediacaran biota thus falls between 550 and 560 Ma. In spite of the fact that the Sturtian glaciation apparently triggered the earliest known mass extinction on earth (the Tindir Mass Extinction), several lines of evidence suggest that the biosphere controlled the timing of and the onset of the Late Proterozoic glaciations, and that it also controlled the timing of the melting of the ice. Furthermore, it appears that the biosphere itself influenced the timing of the appearance of the Ediacaran biota. Whereas snowball earth events lurched suddenly from very cold (tillites) to very hot (cap carbonates) climate, the sequence going from the Gaskiers glacial event (c. 580 million years ago) to the Shuram was part of a wild climatic gyration where the earth went from hot (intense granite weathering at high latitudes) to cold (Gaskiers glaciation) to hot (Shuram event). The Shuram is the greatest negative carbon isotopic excursion in earth history, possibly because this is the moment in earth history when the burrowing animals assert themselves in a geochemical sense, and by remobilizing sea floor carbon, forestall a major glaciation.

Patience obtains everything.

St. Teresa of Avila

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison CW, Hilgert JW (1986) Scale microfossils from the early Cambrian of northwest Canada. J Paleontol 60:973–1015

    Article  Google Scholar 

  • Bailey RH, Bland BH (2001) Recent developments in the study of the Boston Bay Group. In: West DP, Bailey RH (eds) Guidebook for geological field trips in New England. Geological Society of America Annual Meeting, Boston, pp U1–U23

    Google Scholar 

  • Barr TD, Kirschvink JL (1983) The paleoposition of North America in the early Paleozoic: new data from the Caborca sequence in Sonora, Mexico. Eos 64(45):689–690

    Google Scholar 

  • Barrio CA et al (1991) El contacto entre la Formación Loma Negra (Grupo Sierras Bayas) y la Formación Cerro Negro, un ejemplo de paleokarst, Olavarría, Provincia de Buenos Aires. Rev Asoc Geol Argent 46:69–76

    Google Scholar 

  • Bidigare R et al (1999) Iron-stimulated changes in carbon isotopic fractionation by phytoplankton in equatorial Pacific waters. Paleoceanography 14:589–595

    Article  Google Scholar 

  • Boag T et al (2016) Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils. Paleobiology 42(4):574–594

    Article  Google Scholar 

  • Boggs S (2012) Principles of sedimentology and stratigraphy, 5th edn. Prentice Hall, Boston

    Google Scholar 

  • Burgess I (2017) Flipped fry freeze. Independent Study Project (supervised by Mark McMenamin), Mount Holyoke College Department of Geology and Geography, pp 1–10

    Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–400

    Article  Google Scholar 

  • Burns SJ, Matter A (1990) Carbon and oxygen isotope stratigraphy of latest Precambrian to Cambrian(?) carbonates of central Oman. Geol Soc Am Abstr Progr 22(7):190

    Google Scholar 

  • Burns SJ, Matter A (1993) Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geol Helv 86(2):595–607

    Google Scholar 

  • Burns SJ et al (1994) The strontium isotopic composition of carbonates from the late Precambrian (~560-540 Ma) Huqf Group of Oman. Chem Geol 111(1–4):269–282

    Article  Google Scholar 

  • Caldeira K, Kasting JF (1992) Susceptibility of the early earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359:226–228

    Article  Google Scholar 

  • Campen RK et al (2003) Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 31:231–234

    Article  Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453

    Article  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert A. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Article  Google Scholar 

  • Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–132

    Article  Google Scholar 

  • Carto SL (2011) Sedimentology of the Squantum ‘tillite’, Boston Basin, USA: modern analogues and implications for the paleoclimate during the Gaskiers glaciation (c. 580 Ma). Ph.D. Dissertation, University of Toronto

    Google Scholar 

  • Chute NE (1969) Bedrock geologic map of the Blue Hills quadrangle, Norfolk, Suffolk, and Plymouth Counties, Massachusetts. U S Geol Surv Quadrangle 796:1

    Google Scholar 

  • Clapham ME, Corsetti FA (2005) Deep valley incision in the terminal Neoproterozoic (Ediacaran) Johnnie Formation, eastern California, USA: tectonically or glacially driven? Precambrian Res 141:154–164

    Article  Google Scholar 

  • Cloud PE (1983) Banded iron formation—a gradualist’s dilemma. In: Trendall AF, Morris RC (eds) Iron-formation: facts and problems. Elsevier, Amsterdam, pp 401–416

    Chapter  Google Scholar 

  • Cloud PE (1988) Oasis in space. Norton, New York

    Google Scholar 

  • Cloud PE et al (1974) Giant stromatolites and associated vertical tubes from the upper Proterozoic Noonday Dolomite, Death Valley region, eastern California. Geol Soc Am Bull 85:1869–1882

    Article  Google Scholar 

  • Cohen PA, Knoll AH (2012) Scale microfossils from the mid-Neoproterozoic Fifteenmile Group, Yukon Territory. J Paleontol 86(5):775–800

    Article  Google Scholar 

  • Coleman NV et al (2002) Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium. Appl Environ Microbiol 68:2726–2730

    Article  Google Scholar 

  • Conway Morris S (2003) Life’s solution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Corozzi AV (ed) (1967) Studies on glaciers preceded by the discourse of Neuchâtel by Louis Agassiz. Hafner, New York

    Google Scholar 

  • Corsetti FA (1998) Regional correlation, age constraints, and geologic history of the Neoproterozoic-Cambrian strata, southern Great Basin, USA: Integrated carbon isotope stratigraphy, biostratigraphy, and lithostratigraphy. Ph.D. Dissertation, University of California at Santa Barbara

    Google Scholar 

  • Corsetti FA et al (2003) A complex microbiota from snowball earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proc Natl Acad Sci USA 100:4399–4404

    Article  Google Scholar 

  • Corsetti FA et al (2006) Trends in oolite dolomitization across the Neoproterozoic-Cambrian boundary: a case study from Death Valley, California. Sed Geol 191:135–150

    Article  Google Scholar 

  • Corsetti FA, Hagadorn JW (2000) Precambrian-Cambrian transition: Death Valley, United States. Geology 28(4):299–302

    Article  Google Scholar 

  • Corsetti FA, Kaufman AJ (2000) High resolution chemostratigraphy of the Neoproterozoic Beck Spring Dolomite, Great Basin, USA. Geol Soc Am Abstr 32:144

    Google Scholar 

  • Crosby WO (1894) Geology of the Boston Basin, Hingham. Occasional Papers of the Boston Society of Natural History 4:179–288

    Google Scholar 

  • Crowell JC (1999) Pre-Mesozoic ice ages: their bearing on understanding the climate system. Geological Society of America, Boulder

    Google Scholar 

  • Cui H et al (2017) Was the Ediacaran Shuram excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chem Geol 450:59–80

    Article  Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:254–249

    Article  Google Scholar 

  • Dietl GP, Flessa KW (2017) Conservation paleobiology: science and practice. Univ Chicago Press, Chicago

    Google Scholar 

  • Dobson P (1826) Remarks on bowlders [sic]. Am J Sci Ser 1(10):217–218

    Google Scholar 

  • Donnadieu Y et al (2003) Is there a conflict between the Neoproterozoic glacial deposits and the snowball earth interpretation?: an improved understanding with numerical modeling. Earth Planet Sci Lett 208:101–112

    Article  Google Scholar 

  • Duval B et al (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol 11:559–566

    Article  Google Scholar 

  • Friedman GM, Sanders JE (1978) Principles of sedimentology. Wiley, New York

    Google Scholar 

  • Eriksson M et al (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol Ecol 40:21–27

    Article  Google Scholar 

  • Fairchild IJ (2001) Encapsulating climate catastrophe: snowball earth. Geoscientist 11:4–5

    Google Scholar 

  • Gaucher C (2000) Sedimentology, palaeontology and stratigraphy of the Arroyo del Soldado Group (Vendian to Cambrian, Uruguay). Beringeria 26:1–120

    Google Scholar 

  • Gaucher C et al (2003) Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Res 120:241–278

    Article  Google Scholar 

  • Gaucher C et al (2004) Chemostratigraphy of the Lower Arroyo del Soldado Group (Vendian, Uruguay) and palaeoclimatic implications. Gondwana Res 7(3):715–730

    Article  Google Scholar 

  • Gingerich PD et al (1983) Origin of whales in epicontental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406

    Article  Google Scholar 

  • Gong Z et al (2017) Rock magnetic cyclostratigraphy of the Doushantuo Formation, south China and its implication for the duration of the Shuram carbon isotope excursion. Precambrian Res 289:62–74

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to global warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Gould CG (2004) The remarkable life of William Beebe. Island Press, Washington, DC

    Google Scholar 

  • Grotzinger JP et al (2011) Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci 4:285–292

    Article  Google Scholar 

  • Hallam A (1992) Great geological controversies, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Harland WB, Rudwick MJS (1964) The great infra-Cambrian ice age. Sci Am 211:28–36

    Article  Google Scholar 

  • Higgins JA, Schrag DP (2003) The aftermath of a snowball earth. Geochem Geophys Geosyst 4(3). https://doi.org/10.1029/2002GC000403

  • Hoffman PF, Li Z-X (2009) A palaeogeographic context for Neoproterozoic glaciation. Pal Pal Pal 277:158–172

    Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nova 14:129–115

    Article  Google Scholar 

  • Hoffmann K-H et al (2004) U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: constraints on Marinoan glaciation. Geology 32(9):817–820

    Article  Google Scholar 

  • Huang J et al (2017) Multiple sulfur isotopic records associated with the ‘Shuram excursion’ from South China. Geol Soc Am Abstr Progr 49(6). https://doi.org/10.1130/abs/2017AM-306932

  • Hughes GB et al (2003) Modern spectral climate patterns in rhythmically deposited argillites of the Gowganda Formation (early Proterozoic), southern Ontario, Canada. Earth Planet Sci Lett 207:12–23

    Article  Google Scholar 

  • Jackson M et al (2003) Neoproterozoic allochthonous salt tectonics during the Lufilian orogeny in the Katangan copperbelt, central Africa. Geol Soc Am Bull 115:314–330

    Article  Google Scholar 

  • Jacobs DK, Speck HP (2017) Cold cradles and warm graves—how temperature constrains oxygen impacting diversity. Geol Soc Am Abstr Progr 49(6). https://doi.org/10.1130/abs/2017AM-308455

  • Li Z-X et al (2013) Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sediment Geol 294:219–232

    Article  Google Scholar 

  • Jenkins RJF (1995) The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Res 73:51–69

    Article  Google Scholar 

  • Johnson CM et al (2003) Ancient geochemical cycling in the earth as inferred from Fe isotope studies of banded iron formations from the Transvaal craton. Contrib Mineral Petrol 144:523–558

    Article  Google Scholar 

  • Kah LC et al (2009) Reinterpreting a Proterozoic enigma: Conophyton-Jacutophyton stromatolites of the Mesoproterozoic Atar Group, Mauritania. Int Assoc Sedimentol Spec Publ 41:277–295

    Google Scholar 

  • Kennedy MJ et al (2001) Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following earth’s coldest intervals? Geology 29:443–446

    Article  Google Scholar 

  • Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball earth. In: Schopf JW, Klein C (eds) The Proterozoic biosphere. Cambridge University Press, Cambridge, MA, pp 51–52

    Google Scholar 

  • Kirschvink JL et al (1991) The Precambrian/Cambrian boundary: magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. Eos 1(4):69–91

    Google Scholar 

  • Koene CJ (1856) Popular lectures: concerning the creation from the formation of the earth to the extinction of the human species, or insights into the natural history of air and its miasmas in connection with acid factories and complaints of those who suffer from their pollution. P. Larcier, Brussels

    Google Scholar 

  • Kunzmann M et al (2017) Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation. Geology 45(3):207–210

    Article  Google Scholar 

  • Laflamme M et al (2013) The end of the Ediacara biota: extinction, biotic replacement or Cheshire Cat? Gondwana Res 23:558–573

    Article  Google Scholar 

  • Leck CM, Persson C (1996) The central Arctic Ocean as a source of dimethyl sulfide-seasonal variability in relation to biological activity. Tellus 48:156–177

    Article  Google Scholar 

  • Leck CM et al (2004) Can marine micro-organisms influence melting of the Arctic pack ice? Eos 85:25–32

    Article  Google Scholar 

  • Le Guerroué E (2006) Sedimentology and chemostratigraphy of the Ediacaran Shuram Formation, Nafum Group, Oman. Ph.D. Dissertation, Swiss Federal Institute of Technology Zürich

    Google Scholar 

  • Licari GR (1978) Biogeology of the late pre-Phanerozoic Beck Spring dolomite of eastern California. J Paleontol 52:767–792

    Google Scholar 

  • Lund K et al (2003) SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geol Soc Am Bull 115:349–372

    Article  Google Scholar 

  • Macdonald FA et al (2010) Early Neoproterozoic scale microfossils in the lower Tindir Group of Alaska and the Yukon Territory. Geology 38:143–146

    Article  Google Scholar 

  • Margesin R et al (2002) Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93

    Article  Google Scholar 

  • Margaritz M et al (1991) Precambrian/Cambrian boundary problem: carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19:847–850

    Article  Google Scholar 

  • Macdonald FA et al (2013) The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chem Geol 362:250–272

    Article  Google Scholar 

  • Matsen B (2005) Descent: the heroic discovery of the abyss. Vintage Books, New York

    Google Scholar 

  • Mawson D (1949) The late Precambrian ice-age and glacial record of the Bibliando dome. J Proc R Soc NSW 82:150–174

    Google Scholar 

  • McMenamin MAS (1990) 2.13.1 mass extinction: events: Vendian. In: Briggs DEG, Crowther PR (eds) Palaeobiology: a synthesis. Blackwell Scientific Publications, Oxford, pp 179–181

    Google Scholar 

  • McMenamin MAS et al (1992) Vendian body fossils (?) and isotope stratigraphy from the Caborca area, Sonora, Mexico. North American Paleontological Convention 5:206

    Google Scholar 

  • McMenamin MAS et al (1994) Upper Precambrian-Cambrian faunal sequence, Sonora, Mexico and lower Cambrian fossils from New Jersey, United States. In: Landing E (ed) Festschrift Honoring Donald W. Fisher, New York State Mus Bull 481:213–227

    Google Scholar 

  • McMenamin MAS (1996) Ediacaran biota from Sonora, Mexico. Proc Natl Acad Sci 93:4990–4993

    Article  Google Scholar 

  • McMenamin MAS (1998) The garden of Ediacara: discovering the first complex life. Columbia Univ Press, New York

    Google Scholar 

  • McMenamin MAS (2001) Review of McDonald, NG, The Connecticut Valley in the age of dinosaurs: a guide to the geologic literature. Isis 92:134–135

    Article  Google Scholar 

  • McMenamin MAS (2004a) Climate, paleoecology and abrupt change during the Late Proterozoic: a consideration of causes and effects. In: Jenkins GS et al (eds) The extreme Proterozoic: geology, geochemistry, and climate. American Geophysical Union, Washington, DC, pp 215–229

    Google Scholar 

  • McMenamin MAS (2004b) Gaia and glaciation: Lipalian (Vendian) environmental crisis. In: Schneider SH et al (eds) Scientists debate Gaia: the next century. MIT Press, Cambridge, MA, pp 115–127

    Google Scholar 

  • McMenamin MAS (2004c) Vendian and Ediacaran. In: Selley RC et al (eds) Encyclopedia of geology. Elsevier, Oxford, pp 371–381

    Google Scholar 

  • McMenamin MAS, Beuthin JD (2008) Fine clastics of the Boston Bay Group: new data and interpretations concerning depositional processes and environments. In: de Wet AP (ed) Keck Geology Consortium, 21st Keck Research Symposium in geology, short contributions, April 2008. Franklin and Marshall College, Lancaster, pp 209–212

    Google Scholar 

  • McMenamin MAS, Schulte McMenamin DL (1990) The emergence of animals: the Cambrian breakthrough. Columbia Univ Press, New York

    Google Scholar 

  • McMenamin MAS, Schulte McMenamin DL (1994) Hypersea: life on land. Columbia Univ Press, New York

    Google Scholar 

  • McMenamin SK et al (2008) Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc Natl Acad Sci USA 105(44):16988–16993

    Article  Google Scholar 

  • Melezhik VA et al (2008) The Shuram-Wonoka event recorded in a high-grade metamorphic terrane: insight from the Scandinavian Caledonides. Geol Mag 145(2):161–172

    Article  Google Scholar 

  • Miller NR et al (2003) Significance of the Tambien Group (Tigrai, n. Ethiopia) for snowball earth events in the Arabian-Nubian shield. Precambrian Res 121:263–283

    Article  Google Scholar 

  • Momeni AA et al (2015) New engineering geological weathering classifications for granitoid rocks. Eng Geol 185:43–51

    Article  Google Scholar 

  • Nance RD (1990) Late Precambrian-early Paleozoic arc-platform transitions in the Avalon terrane of the northern Appalachians: review and implications. Geol Soc Am Spec Pap 245:1–11

    Google Scholar 

  • Passchier S, Erukanure E (2010) Palaeoenvironments and weathering regime of the Neoproterozoic Squantum ‘tillite’, Boston Basin: no evidence of a snowball earth. Sedimentology 57:1526–1544

    Article  Google Scholar 

  • Petersen SV et al (2016) End-cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nat Commun 7:12079. https://doi.org/10.1038/ncomms12079

    Article  Google Scholar 

  • Peterson KJ et al (2003) A fungal analog for Newfoundland Ediacaran fossils? Integr Comp Biol 43:127–136

    Article  Google Scholar 

  • Porter SM (2004) The fossil record of early eukaryotic diversification. Paleontol Soc Pap 10:35–50

    Google Scholar 

  • Porter SM (2011) The rise of predators. Geology 39(6):607–608

    Article  Google Scholar 

  • Poulsen CJ et al (2001) Impact of ocean dynamics on the simulation of the Neoproterozoic ‘snowball earth’. Geophys Res Lett 28:1575–1578

    Google Scholar 

  • Poulsen CJ et al (2002) Testing paleogeographic controls on a Neoproterozoic snowball earth. Geophys Res Lett 29(11). https://doi.org/10.1029/2001GL014352

  • Prave AR (1999) Two diamictites, two cap carbonates, two δ13C excursions, two rifts: the Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology 27:339–342

    Article  Google Scholar 

  • Pu JP et al (2016) Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44(11):955–958

    Article  Google Scholar 

  • Rickard D et al (2017) Sedimentary sulfides. Elements 13(2):117–122

    Article  Google Scholar 

  • Roberts MT (1982) Depositional environments and tectonic setting of the Crystal Spring Formation, Death Valley region, California. In: Cooper JD et al (eds) Geology of selected areas in the San Bernardino Mountains, western Mojave Desert, and southern Great Basin, California, Death Valley Publishing Company, Shoshone, California, pp 143–154

    Google Scholar 

  • Rothman DH (2017) Thresholds of catastrophe in the earth system. Sci Adv 3(9). https://doi.org/10.1126/sciadv.1700906

  • Runnegar B (2000) Loophole for snowball earth. Nature 405:403–404

    Article  Google Scholar 

  • Saltzman MR (2003) Late Paleozoic ice age: oceanic gateway or pCO2? Geology 31:151–154

    Article  Google Scholar 

  • Sharp M et al (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110

    Article  Google Scholar 

  • Skehan JW (2001) Roadside geology of Massachusetts. Mountain Press, Missoula, Montana

    Google Scholar 

  • Sour-Tovar F et al (2007) Ediacaran and Cambrian index fossils from Sonora, Mexico. Palaeontology 50(1):169–175

    Article  Google Scholar 

  • Stewart JH et al (1984) Upper Proterozoic and Cambrian rocks in the Caborca region, Sonora, Mexico-physical stratigraphy, biostratigraphy, Paleocurrent studies and regional relations. U S Geol Surv Prof Pap 1309:1–36

    Google Scholar 

  • Stow DAV (2006) Sedimentary rocks in the field-A color guide. Academic Press, Burlington

    Google Scholar 

  • Suarez CA et al (2017) A chronostratigraphic assessment of the Moenave Formation, USA using C-isotope chemostratigraphy and detrital zircon geochronology: implication for the terrestrial end Triassic extinction. Earth Planet Sci Lett 475(1):83–93

    Article  Google Scholar 

  • Takazi K et al (1994) Clay aerosols and Arctic ice algae. Clay Clay Miner 42:402–408

    Article  Google Scholar 

  • Takeuchi N et al (2001) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33:115–122

    Article  Google Scholar 

  • Tsukui K et al (2017) Developing an enhanced chronology for the terminal Ediacaran-Cambrian transition on a global scale. Geol Soc Am Abstr Progr 49(6). https://doi.org/10.1130/abs/2017AM-308028

  • Tucker ME (1989) Carbon isotopes and Precambrian-Cambrian boundary geology, South Australia: ocean basin formation, seawater chemistry and organic evolution. Terra Nova 1:573–582

    Article  Google Scholar 

  • Turunen J et al (2002) Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions. The Holocene 12:79–90

    Article  Google Scholar 

  • van de Shootbrugge et al (2008) Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event. Geochem Geophys Geosyst 9:Q04028. https://doi.org/10.1029/2997GC001914

    Google Scholar 

  • Vanyo JP, Awramik SM (1985) Stromatolites and earth-sun-moon dynamics. Precambrian Res 29:121–142

    Article  Google Scholar 

  • Verdel C et al (2011) The Shuram and subsequent Ediacaran carbon isotope excursions from southwest Laurentia, and implications for environmental stability during the metazoan radiation. Geol Soc Am Bull 123(7/8):1539–1559

    Article  Google Scholar 

  • Vernadsky V (1998) The biosphere. Copernicus, New York

    Book  Google Scholar 

  • Vidal G, Knoll AH (1982) Radiations and extinctions of plankton in the late Proterozoic and early Cambrian. Nature 297:57–60

    Article  Google Scholar 

  • Wang P et al (2003) Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology 33:239–242

    Article  Google Scholar 

  • Wang X et al (2016) Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China. Precambrian Res 273:53–66

    Article  Google Scholar 

  • Walker G (2003) Snowball earth: the story of the great global catastrophe that spawned life as we know it. Crown Books, New York

    Google Scholar 

  • Wendler I (2013) A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for late Cretaceous global correlation. Earth-Sci Rev 126:116–146

    Article  Google Scholar 

  • Wharton RA et al (1985) Cryoconite holes on glaciers. Bioscience 35:440–503

    Article  Google Scholar 

  • Williams GE (1975) Late Precambrian glacial climate and the earth’s obliquity. Geol Mag 112:441–465

    Article  Google Scholar 

  • Williams GE (1979) Sedimentology, stable-isotope geochemistry and palaeoenvironment of dolostones capping late Precambrian glacial sequences in Australia. J Geol Soc Aust 26:377–386

    Article  Google Scholar 

  • Williams H et al (1982) Petrography: an introduction to the study of rocks in thin sections. Freeman, New York

    Google Scholar 

  • Williams J (2008) Laminites and dropstones in the Cambridge Argillite (Ediacaran), Hewitt’s Cove, Hingham, Massachusetts. In: de Wet AP (ed) Keck Geology Consortium, 21st Keck Research Symposium in geology, short contributions, April 2008. Franklin and Marshall College, Lancaster, pp 234–237

    Google Scholar 

  • Williams J et al (2008) Laminites in the Cambridge Argillite (Ediacaran), Hewitt’s Cove, Hingham, Massachusetts. Geol Soc Am Abstr Progr 40(1):69

    Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, New York

    Book  Google Scholar 

  • Wood WT et al (2002) Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness. Nature 420:656–660

    Article  Google Scholar 

  • Woods KN (1999) Investigating the nature of the dolomite in a possible Neoproterozoic cap carbonate: the Noonday Formation, Death Valley, CA. Geol Soc Am Abstr Progr 31:486

    Google Scholar 

  • Zhou C et al (2017) The stratigraphic complexity of the middle Ediacaran carbon isotopic record in the Yangtze Gorges area, South China, and its implications for the age and chemostratigraphic significance of the Shuram excursion. Precambrian Res 288:23–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McMenamin, M.A.S. (2018). Shuram Excursion. In: Deep Time Analysis. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-74256-4_2

Download citation

Publish with us

Policies and ethics