Skip to main content

Seventh Law

  • Chapter
  • First Online:
Deep Time Analysis

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 978 Accesses

Abstract

The seven laws of morphogenetic evolution allow us to better comprehend the constraints and possibilities of evolutionary change. Parity bits of Hamming’s error-correcting code procedure may be used to simulate the appearance and disappearance of the scleritome. The Seventh Law states that morphogenetic field vectors may be bundled or dilated in a geometrically regular fashion to generate compound eyes or their ectodermal equivalent. The discovery of these laws implies that we exist in a law-governed universe, where the operation of said laws implies repeated and predictable outcomes in the history of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott UK, Asmundson VS (1957) Scaleless, an inherited ectodermal defect in the domestic fowl. J Hered 48(2):63–70

    Article  Google Scholar 

  • Appel TA (1987) The Cuvier-Geoffroy debate: French biology in the decades before Darwin. Oxford University Press, New York/Oxford

    Google Scholar 

  • Bengtson S et al (1986) The Cambrian netlike fossil Microdictyon. In: Hoffman A, Nitecki MH (eds) Problematic fossil taxa. Oxford University Press, Oxford, pp 97–115

    Google Scholar 

  • Bolker JA (2000) Modularity in development and why it matters to evo-devo. Am Zool 40(5):770–776

    Google Scholar 

  • Brown CM et al (2017) An exceptionally preserved three-dimensional armored dinosaur reveals insights into coloration and Cretaceous predatorprey dynamics. Curr Biol 27:2514–2521.e3. https://doi.org/10.1016/j.cub.2017.06.071

    Article  Google Scholar 

  • Cerda IA, Powell JE (2010) Dermal armor histology of Saltasaurus loricatus, an upper Cretaceous sauropod dinosaur from northwest Argentina. Acta Palaeontol Pol 55(3):389–398

    Article  Google Scholar 

  • Chen C et al (2015) How the mollusc got its scales: convergent evolution of the molluscan scleritome. Biol J Linnean Soc 114:949–954

    Article  Google Scholar 

  • Dawson G (2016) Show me the bone: reconstructing prehistoric monsters in nineteenth-century Britain and America. Chicago Scholarship Online, Chicago. https://doi.org/10.7208/chicago/9780226332871.001.0001

    Book  Google Scholar 

  • Dzik J (2003) Early Cambrian lobopodian sclerites and associated fossils from Kazakhstan. Palaeontology 46(1):93–113

    Article  Google Scholar 

  • Edelman DB et al (2016) Origin of the vertebrate body plan via mechanically biased conservation of geometrically regular patterns in the structure of the blastula. Prog Biophys Mol Biol 121:212–244. https://doi.org/10.1016/j.pbiomolbio.2016.06.007

    Article  Google Scholar 

  • Escánez A et al (2017) New records of the scaled squid, Lepidoteuthis grimaldii Joubin, 1895 in the Canary Islands, eastern Atlantic Ocean. Spixiana 40(1):7–12

    Google Scholar 

  • Feynman RP (1996) Feynman lectures on computation. Westview Press, Boulder

    Google Scholar 

  • Filippov AÉ et al (2017) Numerical simulation of colloidal self-assembly of super-hydrophobic arachnid cerotegument structures. J Theoretical Biol 430:1–8

    Article  Google Scholar 

  • Gilbert SF et al (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173(2):357–372

    Article  Google Scholar 

  • Greshko M (2017) Turned to stone: how a Canadian mine yielded one of the best preserved dinosaurs ever found. Natl Geogr 231(6):92–105

    Google Scholar 

  • Halstead LB (1982) The search for the past. Doubleday, Garden City/New York

    Google Scholar 

  • Hamming RW (1980) Coding and information theory. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Jackson DJ et al (2006) A rapidly evolving secretome builds and patterns a sea shell. BMC Biol 4:40. https://doi.org/10.1186/1741-7007-4-40

    Article  Google Scholar 

  • Jackson DJ et al (2010) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27:591–608

    Article  Google Scholar 

  • Kawaguti S, Baba K (1959) A preliminary note on a two-valved sacoglossan gastropod, Tamanovalva limax, n. gen., n. sp., from Tamano, Japan. Biol J Okayama Univ 5(3–4):177–184

    Google Scholar 

  • Kocot KM et al (2016) Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization. Front Zool 13:23. https://doi.org/10.1186/s12983-016-0155-z

    Article  Google Scholar 

  • Lang RJ (2011) Origami design secrets: mathematical methods for an ancient art, 2nd edn. CRC Press, Boca Raton. http://www.langorigami.com/publication/origami-design-secrets-2nd-edition

    Book  Google Scholar 

  • Le Renard J et al (1996) On Candinia (Sacoglossa: Juliidae), a new fossil genus of bivalved gastropods. J Paleontol 70(2):230–235

    Article  Google Scholar 

  • Marshall CR (2017) Five palaeobiological laws needed to understand the evolution of the living biota. Nature Ecol Evol 1:0165. https://doi.org/10.1038/s41559-017-0165

    Article  Google Scholar 

  • Mazza E (2016) Confused Rush Limbaugh can’t figure out why gorillas still exist. Huffington Post, New York. http://www.huffingtonpost.com/entry/rush-limbaugh-gorillas-evolution_us_574e5de6e4b0757eaeb10be0

    Google Scholar 

  • McMenamin MAS (1984) Paleontology and stratigraphy of lower Cambrian and upper Proterozoic sediments, Caborca Region, Northwestern Sonora, Mexico. Ph.D. Dissertation, University of California at Santa Barbara. University Microfilms International, Ann Arbor

    Google Scholar 

  • McMenamin MAS (1992) Two new species of the Cambrian genus Mickwitzia. J Paleontol 66(1):173–182

    Article  Google Scholar 

  • McMenamin MAS (2009) Paleotorus: the laws of morphogenetic evolution. Meanma Press, South Hadley

    Google Scholar 

  • McMenamin MAS (2015a) Paramphibia: a new class of tetrapods. Meanma Press, South Hadley

    Google Scholar 

  • McMenamin MAS (2015b) The theological treachery of partial scientific truths. New Oxford Rev 82(6):30–33

    Google Scholar 

  • McMenamin MAS (2016) Dynamic paleontology: using quantification and other tools to decipher the history of life. Springer, Cham

    Book  Google Scholar 

  • McMenamin MAS, Schulte McMenamin DL (1994) Hypersea: life on land. Columbia University Press, New York

    Google Scholar 

  • Peredo CM et al (2017) Decoupling tooth loss from the evolution of baleen in whales. Front Mar Sci 4:67. https://doi.org/10.3389/fmars.2017.00067

    Article  Google Scholar 

  • Saint-Hilaire G (1807) Considérations sur les pièces de la tête osseuse des animaux vertébrés, et particulièrement sur celles du crâne des oiseaux. Ann Mus Hist Nat 10:342–365

    Google Scholar 

  • Schoenemann B et al (2009) A miniscule optimized visual system in the lower Cambrian. Lethaia 42(3):265–273

    Article  Google Scholar 

  • Seilacher A (1994) Candle wax shells, morphodynamics, and the Cambrian explosion. Acta Palaeontol Pol 38(3/4):273–280

    Google Scholar 

  • Shanta BN (2015) Life and consciousness-the Vedantic view. Commun Integ Biol 8(5):e1085138

    Article  Google Scholar 

  • Sheesley P et al (2014) The morphogenetic mapping of the brain and the design of the nervous system. Int J Brain Sci, https://doi.org/10.1155/2014/424718

  • Sigwart JD (2017) Zoology: molluscs all beneath the sun, one shell, two shells, more or none. Curr Biol 27:R702–R719

    Article  Google Scholar 

  • Smith M (2011) Hallucigenia and the evolution of animal body plans. Palaeontology [Online] 7:1–9

    Google Scholar 

  • Stallings W (2006) Computer organization and architecture, 7th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Thompson DW (1917) On growth and form. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vinther J (2009) The canal system in sclerites of lower Cambrian Sinosachites (Halkieriidae: Sachitida): significance for the molluscan affinities of the sachitids. Palaeontology 52:689–712

    Article  Google Scholar 

  • Waagen L (1911) Palaeontology. In: The Catholic encyclopedia. Robert Appleton Company, New York. Retrieved January 4, 2011 from New Advent: http://www.newadvent.org/cathen/11410a.htm

    Google Scholar 

  • Wells KL et al (2012) Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens. BMC Genomics 13:257. http://www.biomedcentral.com/1471-2164/13/257

    Article  Google Scholar 

  • Wotte T, Sundberg FA (2017) Small shelly fossils from the Montezuman—Delamaran of the Great Basin in Nevada and California. J Paleontol 91(5):883–901

    Article  Google Scholar 

  • Zhang X-G, Aldridge RJ (2007) Development and diversification of trunk plates of the lower Cambrian lobopodians. Palaeontology 50(2):401–415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McMenamin, M.A.S. (2018). Seventh Law. In: Deep Time Analysis. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-74256-4_1

Download citation

Publish with us

Policies and ethics