Skip to main content

Liquorice–Mycorrhiza Interactions

  • Chapter
  • First Online:
Liquorice

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

Abstract

In China, liquorice is regarded as a superior balancing or harmonizing agent. It finds its way in several herbal supplements, it is used as an important food additive and in making candy as well as other confectionary stuff. The widespread use of this botanical supplement has thus lead to the large-scale farming of this crop. Therefore, strategies to increase the supply of liquorice by increasing either cultivation or plant biomass are highly desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahulu EM, Nakata M, Nonaka M (2005) Arum- and Paris type arbuscular mycorrhizas in a mixed pine forest on sand dune soil in Niigata Prefecture, central Honshu, Japan. Mycorrhiza 15(2):129–136

    Article  Google Scholar 

  • Akhzari D (2015) Response of Glycyrrhiza glabra L. to arbuscular mycorrhizal fungi and water stress. J Essent Oil Bearing Plants 18(4):992–1002

    Google Scholar 

  • Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66(4):762–769

    Article  CAS  PubMed  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ et al (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Ayabe S, Kobayashi M, Hikichi M, Matsumoto K (1980) Flavonoids from the cultured cells of Glycyrrhiza echinata. Phytochemistry 19:2179–2183

    Article  CAS  Google Scholar 

  • Bao YY, Yan W (2004) Arbuscular mycorrhizae and their structural types on common plants in grasslands of mid-western Inner Mongolia. Biodiversity Sci 12(5):501–508

    Google Scholar 

  • Bavaresco L, Fogher C (1996) Lime-induced chlorosis of grapevine as affected by rootstock and root infection with arbuscular mycorrhiza and Pseudomonas fluorescens. Vitis 35:119–123

    CAS  Google Scholar 

  • Brundrett MC, Kendrick WB (1990a) The roots and mycorrhizae of herbaceous woodland plants. I. Quantitative aspects of morphology. New Phytol 114:457–468

    Article  Google Scholar 

  • Brundrett MC, Kendrick WB (1990b) The roots and mycorrhizae of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol 114:469–479

    Article  Google Scholar 

  • Close TJ (1996) Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. J Plant Physiol 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ, Chandler PM (1990) Cereal dehydrins: serology, gene mapping and potential functional roles. Aust J Plant Physiol 17:333–344

    Article  CAS  Google Scholar 

  • Duponnois R, Plenchette C, Bâ AM (2001) Growth stimulation of seventeen fallow leguminous plants inoculated with Glomus aggregatum in Senegal. Eur J Soil Biol 37(3):181–186

    Article  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water uptake by mycorrhizal plants. Can J Bot 69:87–94

    Article  Google Scholar 

  • Fu YJ (2004) Gan Cao: the Chinese licorice. Science Press, Beijing New York

    Google Scholar 

  • Gadkar V, David-Schwartz R, Kunik T et al (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127(4):1493–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68(2):280–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gange AC (2000) Arbuscular mycorrhizal fungi, collembola and plant growth. Trends Ecol Evol 15(9):369–372

    Article  CAS  PubMed  Google Scholar 

  • George E (2000) Nutrient uptake. In: Kapulnick Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Netherlands, pp 288–307

    Google Scholar 

  • Karthikeyan B, Jaleel CA, Changxing Z, Joe MM, Srimannarayan J, Deiveekasundaram M (2008) The effect of AM fungi and phosphorus level on the biomass yield and ajmalicine production in Catharanthus roseus. EurAsian J Biosci 2:26–33

    Google Scholar 

  • Kaushih S, Kumar A, Aggarwal A (2011a) Influence of hosts and substrates on mass multiplication of Glomus mosseae. Afr J Agric Res 6:2971–2977

    Google Scholar 

  • Kaushih S, Kumar A, Aggarwal A, Parkash V (2011b). Influence of inoculation with the endomycorrhizal fungi and Trichoderma viride on morphological and physiological growth parameters of Rauwolfia serpentina Benth. ex. Kurtz. Indian J Microbiol https://doi.org/10.1007/s12088-011-0215-1

  • Liu JR, Zhao WB, Wang HY, Jiang FSH, Xiang Y, Li XY, Zhu Y (2004) Output of cultivated glycyrrhizia in different growth stages and analytical comparison of its active ingredients. Shanghai J Tradit Chin Med 11(38):56–58

    Google Scholar 

  • Liu J, Wu L, Wei S, Xiao X, Su C, Jiang P, Song Z, Wang T, Yu Z (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 52:29–39

    Article  CAS  Google Scholar 

  • Liu H, Tan Y, Nell M, Zitter-Eglseer K, Wawscrah C et al (2014) Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites. J Arid Land 6(2):186–194

    Article  Google Scholar 

  • Manoharan PT, Pandi M, Shanmugaiah V, Gomathinayagam S, Balasubramanian N (2008) Effect of vesicular arbuscular mycorrhizal fungus on the physiological and biochemical changes of five different tree seedlings grown under nursery conditions. Afr J Biotechnol 7:3431–3436

    Google Scholar 

  • Mathur N, Vyas A (1995) Influence of VA mycorrhizae on net photosynthesis and transpiration of Ziziphus mauritiana. J Plant Physiol 147:328–330

    Article  CAS  Google Scholar 

  • Muthukumar T, Udaiyan K (2000) The role of seed reserves in arbuscular mycorrhizal formation and growth of Leucaena leucocephala (Lam.) de Wit. and Zea mays L. Mycorrhiza 9:323–330

    Article  Google Scholar 

  • Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Ozturk M, Anjum N (2016) Identification and comparative analysis of H2O2-scavenging enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7(301). www.frontiersin.org

  • Paiva NL (2000) An introduction to the biosynthesis of chemicals used in plant microbe interactions. J Plant Growth Regul 19:131–143

    CAS  PubMed  Google Scholar 

  • Parkash V, Aggarwal A (2009) Diversity of endomycorrhizal fungi and their synergistic effect on the growth of Acacia catechu Willd. J For Sci 55:461–468

    Article  CAS  Google Scholar 

  • Parkash V, Aggarwal A, Sharma V (2011a) Rhizospheric effect of vesicular arbuscular mycorrhizal inoculation on biomass production of Ruta graveolens L.: a potential medicinal and aromatic herb. J Plant Nutr 34:1386–1396

    Article  CAS  Google Scholar 

  • Parkash V, Sharma S, Aggarwal A (2011b) Symbiotic and synergistic efficacy of endomycorrhizae with Dendrocalamus strictus L. Plant Soil Environ 57:447–452

    Article  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618

    Article  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Singh NV, Singh SK, Singh AK, Meshram DT, Suroshe SS, Mishra DC (2012) Arbuscular mycorrhizal fungi (AMF) induced hardening of micropropagated pomegranate (Punica granatum L.) plantlets. Sci Hortic 136:122–127

    Article  Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol 137:373–388

    Article  Google Scholar 

  • Teng SC, Tsai HJ, Tsai MC, Lee WM, Chen LC, Lin CC (2003) Using both chemical and biological fingerprints for the quality of the study of estrogenic licorice (Glycyrrhiza uralensis). J Food Sci 68(7):2372–2377

    Article  CAS  Google Scholar 

  • Vazquez M, Cesar S, Azcon R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Article  Google Scholar 

  • Vestberg M, Estaun V (1994) Micropropagated plants, an opportunity to positively manage mycorrhizal activities. In: Gianinazzi S, Schüepp H (eds) Impact of AMF on sustainable agriculture and natural ecosystems. Birkhauser Verlag, Basel, pp 217–225

    Google Scholar 

  • Visser S (1985) Management of microbial processes in surface mined land reclamation in western Canada. In: Tate RL, Klein DA (eds) Soil reclamation processes: microbiological analyses and applications. Marcel Dekker, New York, Basel, pp 203–241

    Google Scholar 

  • Yadav K, Aggarwal A, Singh N (2013) Arbuscular mycorrhizal fungi induced acclimatization and growth enhancement of Glycyrrhiza glabra L.: a potential medicinal plant. Agric Res 2(1):43–47

    Google Scholar 

  • Zhang ZL (1990) A guide of phytophysiological experiment. Higher Education Press, Beijing, pp 57–62

    Google Scholar 

  • Zhang J, Yao J, Ding L (2000) Study advances on the utilization of Glycyrrhiza. Grassland Turf 89(2):12–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Münir Öztürk .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Öztürk, M., Altay, V., Hakeem, K.R., Akçiçek, E. (2017). Liquorice–Mycorrhiza Interactions. In: Liquorice. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-319-74240-3_5

Download citation

Publish with us

Policies and ethics