Skip to main content

Computed Tomography and Magnetic Resonance in the Imaging of the Aortic Valve and Ascending Aorta

  • Chapter
  • First Online:
Aortic Regurgitation

Abstract

Computed tomography and magnetic resonance imaging are modern tools that can be implemented in the diagnostic imaging of aortic insufficiency and aortic root disease. Both techniques are characterised by high reproducibility and the ability to perform the imaging in any plane. Compared to echocardiography, they are considered as alternatives in the evaluation of aortic regurgitation severity and left ventricular function, and superior in regard to the imaging of ascending aorta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the Management of Valvular Heart Disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg. 2012;42:S1–44.

    Article  PubMed  Google Scholar 

  2. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(23):2440–92.

    Article  PubMed  Google Scholar 

  3. Nieman K, Shapiro MD, Ferencik M, et al. Reperfused myocardial infarction: contrast-enhanced 64-section CT in comparison to MR imaging. Radiology. 2008;247:49–56.

    Article  PubMed  Google Scholar 

  4. Kim DH, Handschumacher MD, Levine RA, et al. Aortic valve adaptation to aortic root dilatation: insights into the mechanism of functional aortic regurgitation from 3-dimensional cardiac computed tomography. Circ Cardiovasc Imaging. 2014;7:828–35.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thubrikar MJ, Labrosse MR, Zehr KJ, et al. Aortic root dilatation may alter the dimensions of the valve leaflets. Eur J Cardiothorac Surg. 2005;28:850–5.

    Article  PubMed  Google Scholar 

  6. Dashkevich A, Blanke P, Siepe M, et al. Preoperative assessment of aortic annulus dimensions: comparison of noninvasive and intraoperative measurement. Ann Thorac Surg. 2011;91:709–14.

    Article  PubMed  Google Scholar 

  7. Holubec T, Higashigaito K, Belobradek Z, et al. An expansible aortic ring in aortic root remodeling: exact position, pulsatility, effectiveness, and stability in three-dimensional CT study. Ann Thorac Surg. 2016;103(1):83–90.

    Article  PubMed  Google Scholar 

  8. Tsang W, Bateman MG, Weinert L, et al. Accuracy of aortic annular measurements obtained from three-dimensional echocardiography, CT and MRI: human in vitro and in vivo studies. Heart. 2012;98:1146–52.

    Article  PubMed  Google Scholar 

  9. Binder RK, Webb JG, Willson AB, et al. The impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: a prospective, multicenter, controlled trial. J Am Coll Cardiol. 2013;62:431–8.

    Article  PubMed  Google Scholar 

  10. Feuchtner GM, Dichtl W, Schachner T, et al. Diagnostic performance of MDCT for detecting aortic valve regurgitation. AJR Am J Roentgenol. 2006;186:1676–81.

    Article  PubMed  Google Scholar 

  11. Feuchtner GM, Dichtl W, Muller S, et al. 64-MDCT for diagnosis of aortic regurgitation in patients referred to CT coronary angiography. AJR Am J Roentgenol. 2008;191:W1–7.

    Article  PubMed  Google Scholar 

  12. Jassal DS, Shapiro MD, Neilan TG, et al. 64-slice multidetector computed tomography (MDCT) for detection of aortic regurgitation and quantification of severity. Investig Radiol. 2007;42:507–12.

    Article  Google Scholar 

  13. Debl K, Djavidani B, Buchner S, et al. Assessment of the anatomic regurgitant orifice in aortic regurgitation: a clinical magnetic resonance imaging study. Heart. 2008;94:e8.

    Article  CAS  PubMed  Google Scholar 

  14. Jeon MH, Choe YH, Cho SJ, et al. Planimetric measurement of the regurgitant orifice area using multidetector CT for aortic regurgitation: a comparison with the use of echocardiography. Korean J Radiol. 2010;11:169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goffinet C, Kersten V, Pouleur AC, et al. Comprehensive assessment of the severity and mechanism of aortic regurgitation using multidetector CT and MR. Eur Radiol. 2010;20:326–36.

    Article  PubMed  Google Scholar 

  16. Dulce MC, Mostbeck GH, O’Sullivan M, et al. Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity-encoded cine MR imaging. Radiology. 1992;185:235–40.

    Article  CAS  PubMed  Google Scholar 

  17. Sondergaard L, Lindvig K, Hildebrandt P, et al. Quantification of aortic regurgitation by magnetic resonance velocity mapping. Am Heart J. 1993;125:1081–90.

    Article  CAS  PubMed  Google Scholar 

  18. Honda N, Machida K, Hashimoto M, et al. Aortic regurgitation: quantitation with MR imaging velocity mapping. Radiology. 1993;186:189–94.

    Article  CAS  PubMed  Google Scholar 

  19. Ambrosi P, Faugere G, Desfossez L, et al. Assessment of aortic regurgitation severity by magnetic resonance imaging of the thoracic aorta. Eur Heart J. 1995;16:406–9.

    Article  CAS  PubMed  Google Scholar 

  20. Cawley PJ, Hamilton-Craig C, Owens DS, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging. 2013;6:48–57.

    Article  PubMed  Google Scholar 

  21. Myerson SG, d’Arcy J, Mohiaddin R, et al. Aortic regurgitation quantification using cardiovascular magnetic resonance: association with clinical outcome. Circulation. 2012;126:1452–60.

    Article  PubMed  Google Scholar 

  22. Regeer MV, Kamperidis V, Versteegh MI, et al. Aortic valve and aortic root features in CT angiography in patients considered for aortic valve repair. J Cardiovasc Comput Tomogr. 2014;8:299–306.

    Article  PubMed  Google Scholar 

  23. Malaisrie SC, Carr J, Mikati I, et al. Cardiac magnetic resonance imaging is more diagnostic than 2-dimensional echocardiography in determining the presence of bicuspid aortic valve. J Thorac Cardiovasc Surg. 2012;144:370–6.

    Article  PubMed  Google Scholar 

  24. Alkadhi H, Leschka S, Trindade PT, et al. Cardiac CT for the differentiation of bicuspid and tricuspid aortic valves: comparison with echocardiography and surgery. AJR Am J Roentgenol. 2010;195:900–8.

    Article  PubMed  Google Scholar 

  25. Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology, European Association for Cardio-Thoracic Surgery, Vahanian A, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33:2451–96.

    Article  Google Scholar 

  26. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2438–88.

    Article  PubMed  Google Scholar 

  27. Mao SS, Ahmadi N, Shah B, et al. Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. Acad Radiol. 2008;15:827–34.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hannuksela M, Lundqvist S, Carlberg B. Thoracic aorta—dilated or not? Scand Cardiovasc J. 2006;40:175–8.

    Article  PubMed  Google Scholar 

  29. Freeman LA, Young PM, Foley TA, et al. CT and MRI assessment of the aortic root and ascending aorta. AJR Am J Roentgenol. 2013;200:W581–92.

    Article  PubMed  Google Scholar 

  30. Bannas P, Rybczynski M, Sheikhzadeh S, et al. Comparison of cine-MRI and transthoracic echocardiography for the assessment of aortic root diameters in patients with suspected Marfan syndrome. Rofo. 2015;187:1022–8.

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez-Palomares JF, Teixido-Tura G, Galuppo V, et al. Multimodality assessment of ascending aortic diameters: comparison of different measurement methods. J Am Soc Echocardiogr. 2016;29(9):819–826.e4.

    Article  PubMed  Google Scholar 

  32. van der Linde D, Rossi A, Yap SC, et al. Ascending aortic diameters in congenital aortic stenosis: cardiac magnetic resonance versus transthoracic echocardiography. Echocardiography. 2013;30:497–504.

    Article  PubMed  Google Scholar 

  33. Ocak I, Lacomis JM, Deible CR, et al. The aortic root: comparison of measurements from ECG-gated CT angiography with transthoracic echocardiography. J Thorac Imaging. 2009;24:223–6.

    Article  PubMed  Google Scholar 

  34. Allen BD, van Ooij P, Barker AJ, et al. Thoracic aorta 3D hemodynamics in pediatric and young adult patients with bicuspid aortic valve. J Magn Reson Imaging. 2015;42:954–63.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Girdauskas E, Rouman M, Disha K, et al. Functional aortic root parameters and expression of aortopathy in bicuspid versus tricuspid aortic valve stenosis. J Am Coll Cardiol. 2016;67:1786–96.

    Article  PubMed  Google Scholar 

  36. Kari FA, Kocher N, Beyersdorf F, et al. Four-dimensional magnetic resonance imaging-derived ascending aortic flow eccentricity and flow compression are linked to aneurysm morphologydagger. Interact Cardiovasc Thorac Surg. 2015;20:582–7; discussion 587–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hope MD, Hope TA, Crook SE, et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging. 2011;4:781–7.

    Article  PubMed  Google Scholar 

  38. Cupps BP, Bree DR, Wollmuth JR, et al. Myocardial viability mapping by magnetic resonance-based multiparametric systolic strain analysis. Ann Thorac Surg. 2008;86:1546–53.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sosnowski M, Mlynarski R, Tendera M. Traditional, forgotten and new left ventricular systolic function parameters on a 64-row multidetector cardiac computed tomography: a reproducibility study. Cardiol J. 2013;20:385–93.

    Article  PubMed  Google Scholar 

  40. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90:29–34.

    Article  PubMed  Google Scholar 

  41. Gardner BI, Bingham SE, Allen MR, et al. Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. Cardiovasc Ultrasound. 2009;7:38.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gruszczynska K, Krzych LJ, Golba KS, et al. Statistical agreement of left ventricle measurements using cardiac magnetic resonance and 2D echocardiography in ischemic heart failure. Med Sci Monit. 2012;18:MT19–25.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bansal D, Singh RM, Sarkar M, et al. Assessment of left ventricular function: comparison of cardiac multidetector-row computed tomography with two-dimension standard echocardiography for assessment of left ventricular function. Int J Cardiovasc Imaging. 2008;24:317–25.

    Article  PubMed  Google Scholar 

  44. Henneman MM, Schuijf JD, Jukema JW, et al. Assessment of global and regional left ventricular function and volumes with 64-slice MSCT: a comparison with 2D echocardiography. J Nucl Cardiol. 2006;13:480–7.

    Article  PubMed  Google Scholar 

  45. Bellenger NG, Burgess MI, Ray SG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J. 2000;21:1387–96.

    Article  CAS  PubMed  Google Scholar 

  46. Brady BD, Knutsen AK, Ma N, et al. MRI-based multiparametric strain analysis predicts contractile recovery after aortic valve replacement for aortic insufficiency. J Card Surg. 2012;27:415–22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Solar M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solar, M., Belobradek, Z. (2018). Computed Tomography and Magnetic Resonance in the Imaging of the Aortic Valve and Ascending Aorta. In: Vojacek, J., Zacek, P., Dominik, J. (eds) Aortic Regurgitation. Springer, Cham. https://doi.org/10.1007/978-3-319-74213-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74213-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74212-0

  • Online ISBN: 978-3-319-74213-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics