Advertisement

Fuzzy Rings and Fuzzy Polynomial Rings

  • S. Melliani
  • I. BakhadachEmail author
  • L. S. Chadli
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 228)

Abstract

In this paper, we introduce the notion of a ring of fuzzy points, and study some basic properties and the relationship between this set and the classical ring R. We also define the fuzzy polynomial rings and fuzzy algebraic elements.

Keywords

Fuzzy points Fuzzy subrings Fuzzy polynomials 

References

  1. 1.
    Kyoung Ho Kim: On fuzzy points in semigroups. IJMMS 26(11), 707–712 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Liu, W.J.: Invariant fuzzy subgroups and fuzzy ideals. Fuzzy Sets Syst. 8, 133–139 (1982)CrossRefzbMATHGoogle Scholar
  3. 3.
    Liu, W.J.: Operations on fuzzy ideals. Fuzzy Sets Syst. 11, 31–41 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Mordeson, J.N.: Fuzzy coefficient fields of fuzzy subrings. Fuzzy Sets Syst. 58, 227–237 (1993)Google Scholar
  5. 5.
    Mordeson, J.N., Bhutani, K.R., Rosenfeld, A.: Fuzzy Group Theory, Studies in Fuzziness and Soft Computing, 182. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Pu, P.M., Liu, Y.M.: Fuzzy topology. I. Neighborhood structure of a fuzzy point and MooreSmith convergence, J. Math. Anal. Appl. 76, 571–599 (1980)Google Scholar
  7. 7.
    Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. 35, 512–517 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.LMACS, Laboratoire de Mathématiques Appliquées & Calcul ScientifiqueSultan Moulay Slimane UniversityBeni MellalMorocco

Personalised recommendations