On the Set of Intermediate Artinian Subrings

  • Driss KarimEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 228)


The paper contributes to the investigation of intermediate Artinian subrings between R and T, where \(R\hookrightarrow T\) is an extension of rings.


Artinian ring Intermediate Artinian subring Directed union of Artinian subrings Infinite product Reduced ring Residue fields Semi-quasilocal ring Von Neumann regular ring Zero-dimensional ring 



The authors are indebted to the referee for his/her useful suggestions and comments.


  1. 1.
    Anderson, D.F., Bouvier, A., Dobbs, D.E., Fontana, M., Kabbaj, S.: On Jaffard domains. Expo. Math. 6, 145–175 (1989)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arapovic, M.: The minimal 0-dimensional overrings of commutative rings. Glas. Mat. Ser. III(18), 47–52 (1983)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arapovic, M.: On the imbedding of a commutative ring into a commutative 0-dimensional ring. Glas. Mat. Ser. III(18), 53–59 (1983)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Atiyah, M.F., Macdonald, I.G.: Introduction to commutative Algebra. Addison-Wesley Publishing Company (1969)Google Scholar
  5. 5.
    Gilmer, R.: A New Criterion for Embeddability in a Zero-dimensional Commutative Ring. Lecture Notes in Pure and Applied Mathematics, vol. 220, pp. 223–229. Marcel Dekker (2001)Google Scholar
  6. 6.
    Gilmer, R., Heinzer, W.: Zero-dimensionallity in commutative rings. Proc. Am. Math. Soc. 115, 881–893 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gilmer, R., Heinzer, W.: Artinian subrings of a commutative ring. Trans. Am. Math. Soc. 336, 295–310 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Huckba, J.: Commutative Rings with Zero-Divisors. Marcel Dekker, New York (1988)Google Scholar
  9. 9.
    Izelgue, L., Karim, D.: On the set of Artinian subrings of a commutative ring. Int. J. Commun. Rings 2, 55–62 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Maroscia, P.: Sur les anneaux de dimension zéro. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., vol. 56, pp. 451–459 (1974)Google Scholar
  11. 11.
    Nagata, M.: Local Rings. Interscience, New York and London (1962)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity Hassan II Casablanca, Faculty of Sciences and Techniques of MohammediaCasablancaMorocco

Personalised recommendations