Skip to main content

When Is \(\mathrm {Int}(E,D)\) a Locally Free D–Module

  • Conference paper
  • First Online:
Homological and Combinatorial Methods in Algebra (SAA 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 228))

Included in the following conference series:

Abstract

Let D be an integral domain with quotient field K, E a subset of K and X an indeterminate over K. The set of integer–valued polynomials on E is defined by \(\mathrm {Int}(E, D) = \{f \in K[X]:f (E) \subseteq D\}\). Clearly, \(\mathrm {Int}(E, D\)) is a subring of K[X] and \(\mathrm {Int}(D, D) = \mathrm {Int}(D)\), the ring of integer–valued polynomials over D. In this paper, we investigate some conditions under which \(\mathrm {Int}(E,D)\) is locally free, or at least flat, as a D–module. Particularly, we are interested in domains that are locally essential with subsets E residually cofinite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atiyah, M.F., McDonald, I.G.: Introduction to Commutative Algebra. Addition–Wesley (1969)

    Google Scholar 

  2. Bourlanger, J., Chabert, J.-L., Evrard, S.E., Gerboud, G.: The characteristic sequence of integer–valued polynomials on a subset. Advances in Commutative Ring Theory (Fez 1997). Lecture Notes in Pure and Applied Mathematics, vol. 205, pp. 161–174. Marcel Dekker, New York (1999)

    Google Scholar 

  3. Cahen, P.-J.: Polynômes à Valeurs Entières. Canad. J. Math. 24, 747–754 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cahen, P.-J.: Parties Pleines d’un Anneau Noetherien. J. Algebra 157, 199–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cahen, P.-J.: Integer-valued polynomials on a subset. Proc. Amer. Math. Soc. 117, 919–929 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cahen, P.-J., Chabert, J.-L.: Coefficients et Valeurs d’un Polynôme. Bull. Sci. Math. 95, 295–304 (1971)

    MathSciNet  MATH  Google Scholar 

  7. Cahen, P.-J., Chabert, J.-L.: Integer–Valued Polynomials. Mathematical Surveys and Monographs, vol. 48. American Mathematical Society (1997)

    Google Scholar 

  8. Cahen, P.-J., Fontana, M., Frisch, S., Glaz, S.: Open problems in commutative ring theory. In: Fontana, M., Frisch, S., Glaz, S. (eds.) Commutative Algebra: Recent Advances in Commutative Rings, Integer–Valued Polynomials, and Polynomial Functions. Springer, 293–305 (2014)

    Google Scholar 

  9. Cahen, P.-J., Gabelli, S., Houston, E.: Mori domains of integer-valued polynomials. J. Pure Appl. Algebra 153, 1–15 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chabert, J.-L, Chapman, S.T., Smith, W.: A Basis of the Ring of Polynomials Integer–Valued on Prime Numbers. In: Factorization in Integral Domains (Iowa 1996). Lecture Notes in Pure and Applied Mathematics, vol. 189, pp. 271–284. Marcel Dekker, New York (1997)

    Google Scholar 

  11. Elliott, J.: Universal properties of integer-valued polynomial rings. J. Algebra 318, 68–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elliott, J.: Some new Approaches to Integer–Valued Polynomial Rings. In: Fontana, M., Kabbaj, S.E., Olberding, B., Swanson, I. (eds.) Commutative Algebra and its Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications. Walter de Gruyter, New York, 223–237 (2009)

    Google Scholar 

  13. Elliott, J.: Integer-valued polynomial rings, \(t\)-closure, and associated primes. Comm. Algebra 39(11), 4128–4147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elliott, J.: Presentations and module bases of integer-valued polynomial rings. J. Algebra Appl. 12(1), 1–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fuchs, L., Salce, L.: Modules over Valuation Domains. Lecture Notes in Pure and Applied Mathematics, vol. 97. Marcel Dekker (1985)

    Google Scholar 

  16. Gilmer, R.: Sets that determine integer-valued polynomials. J. Number Theory 33, 95–100 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilmer, R.: Multiplicative Ideal Theory, Queen’s Papers in Pure and Applied Mathematics, vol. 90. Queen’s University, Kingston, Ontario (1992)

    Google Scholar 

  18. Izelgue, L., Tamoussit, A.: On the flatness of \({\rm Int}(D)\) as a \(D[X]\)-module. Gulf J. Math. 4(4), 39–47 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Izelgue, L., Tamoussit, A.: On Locally Free Modules of Integer–Valued Polynomials. Submitted

    Google Scholar 

  20. Matsumura, H.: Commutative Ring Theory. Cambridge University Press (1986)

    Google Scholar 

  21. Mulay, S.B.: On Integer–Valued Polynomials. Zero–Dimensional Commutative Rings. Lecture Notes in Pure and Applied Mathematics, vol. 171, pp. 331–345. Marcel Dekker, New York (1995)

    Google Scholar 

  22. Pirtle, E.M.: Integral domains which are almost krull. J. Sci. Hiroshima Univ. Ser. A-I 32, 441–447 (1968)

    MathSciNet  Google Scholar 

  23. Polya, G.: Über Ganzwertige Polynome in Algebraischen Zahlkörpern. J. Reine Angew. Math. 149, 79–116 (1919)

    MATH  Google Scholar 

  24. Rotman, J.: Advanced Modern Algebra, 1st edn. Prentice Hall (2002); 2nd printing (2003)

    Google Scholar 

  25. Tartarone, F.: Integer-valued polynomials over Krull-type domains and Prüfer v-multiplication domains. Proc. Amer. Math. Soc. 128(6), 1617–1625 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tamoussit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Izelgue, L., Tamoussit, A. (2018). When Is \(\mathrm {Int}(E,D)\) a Locally Free D–Module. In: Badawi, A., Vedadi, M., Yassemi, S., Yousefian Darani, A. (eds) Homological and Combinatorial Methods in Algebra. SAA 2016. Springer Proceedings in Mathematics & Statistics, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-74195-6_10

Download citation

Publish with us

Policies and ethics