Advertisement

b-Symbol Distance Distribution of Repeated-Root Cyclic Codes

  • Hojjat MostafanasabEmail author
  • Esra Sengelen Sevim
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 228)

Abstract

Symbol-pair codes, introduced by Cassuto and Blaum (Proc IEEE Int Symp Inf Theory, 988–992, 2010 [1]), have been raised for symbol-pair read channels. This new idea is motivated by the limitations of the reading process in high-density data storage technologies. Yaakobi et al. (IEEE Trans Inf Theory 62(4):1541–1551, 2016 [8]) introduced codes for b-symbol read channels, where the read operation is performed as a consecutive sequence of \(b>2\) symbols. In this paper, we come up with a method to compute the b-symbol-pair distance of two n-tuples, where n is a positive integer. Also, we deal with the b-symbol-pair distances of some kind of cyclic codes of length \(p^e\) over \({F}_{p^m}\).

Keywords

b-Symbol pair Distance distribution Cyclic codes 

References

  1. 1.
    Cassuto, Y., Blaum. M.: Codes for symbol-pair read channels. In: Proceeding of the IEEE International Symposium on Information Theory, Austin, TX, USA, June, pp. 988–992. (2010)Google Scholar
  2. 2.
    Cassuto, Y., Blaum, M.: Codes for symbol-pair read channels. IEEE Trans. Inf. Theory 57(12), 8011–8020 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cassuto, Y., Litsyn, Y.: Symbol-pair codes: algebraic constructions and asymptotic bounds. In: Proceeding of the IEEE International Symposium on Information Theory, St. Petersburg, Russia, July/Aug, pp. 2348–2352. (2011)Google Scholar
  4. 4.
    Chee, Y.M., Ji, L., Kiah, H.M., Wang, C., Yin, J.: Maximum distance separable codes for symbol-pair read channels. IEEE Trans. Inf. Theory 59(11), 7259–7267 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chee, Y.M., Kiah, H.M., Wang, C.: Maximum distance separable symbol-pair codes. In: Proceeding of the International Symposium on Information Theory, Cambridge, MA, USA, July, pp. 2886–2890. (2012)Google Scholar
  6. 6.
    Dinh, H.Q.: On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions. Finite Fields Appl. 14(1), 22–40 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hirotomo, M., Takita, M., Morii, M.: Syndrome decoding of symbol-pair codes. In: Proceeding of the IEEE Information Theory Workshop, Hobart, TAS, Australia, pp. 162–166. (2014)Google Scholar
  8. 8.
    Yaakobi, E., Bruck, J., Siegel, P.H.: Constructions and decoding of cyclic codes over \(b\)-symbol read channels. IEEE Trans. Inf. Theory 62(4), 1541–1551 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yaakobi, E., Bruck, J., Siegel, P.H.: Decoding of cyclic codes over symbol-pair read channels. In: Proceeding of the International Symposium on Information Theory, Cambridge, MA, USA, pp. 2891–2895. (2012)Google Scholar
  10. 10.
    Zhu, S., Sun, Z., Wang, L.: The symbol-pair distance distribution of repeated-root cyclic codes over \({F}_{p^m}\). arXiv:1607.01887v1, (2016)

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics and ApplicationsUniversity of Mohaghegh ArdabiliArdabilIran
  2. 2.Eski Silahtaraǧa Elektrik Santrali, Kazim Karabekir, Istanbul Bilgi UniversityEyüpTurkey

Personalised recommendations