Skip to main content

Bioinformatics in Leishmania Drug Design

  • Chapter
  • First Online:
Drug Resistance in Leishmania Parasites

Abstract

Leishmania drug design follows the typical path of the flow of genetic information: By analyzing genome information and considering infection-specific RNA and protein expression, potential targets for drug design and vaccine development are identified. Therefore, to implement successful intervention strategies against Leishmania infection, specific features of the process are critical; herein they are described, including specific genome information, good vaccine targets, and classical as well as innovative drug targeting strategies. In addition, a combination of software and web sites has been structured here with references and tools for rapid analysis to rank and examine new target structures in Leishmania.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.dndi.org

  2. World Health Organization, September 2016.

    Google Scholar 

  3. Peacock CS, Seeger K, Harris D, Murphy L, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39(7):839–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Otranto D, Dantas-Torres F. The prevention of canine leishmaniasis and its impact on public health. Trends Parasitol. 2013;29(7):339–45.

    Article  PubMed  Google Scholar 

  5. Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9(8):604–15.

    Article  PubMed  CAS  Google Scholar 

  6. Marsden PD. Mucosal leishmaniasis (“espundia” Escomel, 1911). Trans R Soc Trop Med Hyg. 1986;80(6):859–76.

    Article  PubMed  CAS  Google Scholar 

  7. Dougall AM, Alexander B, Holt DC, Harris T, et al. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int J Parasitol. 2011;41(5):571–9.

    Article  PubMed  Google Scholar 

  8. Alvar J, Velez ID, Bern C, Herrero M, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. http://www.who.int/leishmaniasis/en

  10. Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 2007;37(10):1097–106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ivens AC, Peacock CS, Worthey EA, Murphy L, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309(5733):436–42.

    Article  PubMed  PubMed Central  Google Scholar 

  12. https://www.ncbi.nlm.nih.gov/genome

  13. www.tritrypdb.org

  14. Raymond F, Boisvert S, Roy G, Ritt JF, et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40(3):1131–47.

    Article  PubMed  CAS  Google Scholar 

  15. Coughlan S, Mulhair P, Sanders M, Schonian G, et al. The genome of Leishmania adleri from a mammalian host highlights chromosome fission in Sauroleishmania. Sci Rep. 2017;7:43747.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Remadi L, Haouas N, Chaara D, Slama D, et al. Clinical presentation of cutaneous leishmaniasis caused by Leishmania major. Dermatology. 2016;232(6):752–9.

    Article  PubMed  CAS  Google Scholar 

  17. do Rego Lima LV, Santos Ramos PK, Campos MB, dos Santos TV, et al. Preclinical diagnosis of American visceral leishmaniasis during early onset of human Leishmania (L.) infantum chagasi-infection. Pathog Glob Health. 2014;108(8):381–4.

    Article  PubMed  Google Scholar 

  18. Castro LS, Franca Ade O, Ferreira Ede C, Hans Filho G, et al. Leishmania infantum as a causative agent of cutaneous leishmaniasis in the state of Mato Grosso Do Sul, Brazil. Rev Inst Med Trop Sao Paulo. 2016;58:23.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alves-Ferreira EV, Toledo JS, De Oliveira AH, Ferreira TR, et al. Differential gene expression and infection profiles of cutaneous and mucosal Leishmania braziliensis isolates from the same patient. PLoS Negl Trop Dis. 2015;9(9):e0004018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Farias LH, Rodrigues AP, Silveira FT, Seabra SH, et al. Phosphatidylserine exposure and surface sugars in two Leishmania (Viannia) braziliensis strains involved in cutaneous and mucocutaneous leishmaniasis. J Infect Dis. 2013;207(3):537–43.

    Article  PubMed  CAS  Google Scholar 

  21. Gomes CM, de Paula NA, Cesetti MV, Roselino AM, Sampaio RN. Mucocutaneous leishmaniasis: accuracy and molecular validation of noninvasive procedures in a L. (V.) braziliensis-endemic area. Diagn Microbiol Infect Dis. 2014;79(4):413–8.

    Article  PubMed  Google Scholar 

  22. Avila-Garcia M, Mancilla-Ramirez J, Segura-Cervantes E, Farfan-Labonne B, et al. Transplacental transmission of cutaneous Leishmania mexicana strain in BALB/c mice. Am J Trop Med Hyg. 2013;89(2):354–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Galindo-Sevilla N, Soto N, Mancilla J, Cerbulo A, et al. Low serum levels of dehydroepiandrosterone and cortisol in human diffuse cutaneous leishmaniasis by Leishmania mexicana. Am J Trop Med Hyg. 2007;76(3):566–72.

    Article  PubMed  CAS  Google Scholar 

  24. Picado A, Ostyn B, Singh SP, Uranw S, et al. Risk factors for visceral leishmaniasis and asymptomatic Leishmania donovani infection in India and Nepal. PLoS One. 2014;9(1):e87641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Morales CA, Palacio J, Rodriguez G, Camargo YC. Zosteriform cutaneous leishmaniasis due to Leishmania (Viannia ) panamensis and Leishmania (Viannia ) braziliensis: report of three cases. Biomedica. 2014;34(3):340–4.

    Article  PubMed  Google Scholar 

  26. Ives A, Ronet C, Prevel F, Ruzzante G, et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011;331(6018):775–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gupta AK, Srivastava S, Singh A, Singh S. De novo whole-genome sequence and annotation of a Leishmania strain isolated from a case of post-kala-azar dermal Leishmaniasis. Genome Announc. 2015;3(4):e00809.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mirzaei A, Schweynoch C, Rouhani S, Parvizi P. Diversity of Leishmania species and of strains of Leishmania major isolated from desert rodents in different foci of cutaneous leishmaniasis in Iran. Trans R Soc Trop Med Hyg. 2014;108(8):502–12.

    Article  PubMed  Google Scholar 

  29. Peters W, Bryceson A, Evans DA, Neal RA, et al. Leishmania infecting man and wild animals in Saudi Arabia. 8. The influence of prior infection with Leishmania arabica on challenge with L. major in man. Trans R Soc Trop Med Hyg. 1990;84(5):681–9.

    Article  PubMed  CAS  Google Scholar 

  30. Eslami G, Hajimohammadi B, Jafari AA, Mirzaei F, et al. Molecular identification of Leishmania tropica infections in patients with cutaneous leishmaniasis from an endemic central of Iran. Trop Biomed. 2014;31(4):592–9.

    PubMed  Google Scholar 

  31. Kwakye-Nuako G, Mosore MT, Duplessis C, Bates MD, et al. First isolation of a new species of Leishmania responsible for human cutaneous leishmaniasis in Ghana and classification in the Leishmania enriettii complex. Int J Parasitol. 2015;45(11):679–84.

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto ES, Campos BL, Jesus JA, Laurenti MD, et al. The effect of ursolic acid on Leishmania (Leishmania) amazonensis is related to programed cell death and presents therapeutic potential in experimental cutaneous leishmaniasis. PLoS One. 2015;10(12):e0144946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Coelho AC, Trinconi CT, Costa CH, Uliana SR. In vitro and in vivo miltefosine susceptibility of a Leishmania amazonensis isolate from a patient with diffuse cutaneous leishmaniasis. PLoS Negl Trop Dis. 2014;8(7):e2999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Eliseev LN, Strelkova MV, Zherikhina II. The characteristics of the epidemic activation of a natural focus of zoonotic cutaneous leishmaniasis in places with a sympatric dissemination of Leishmania major, L. turanica and L. gerbilli. Med Parazitol (Mosk). 1991;3:24–9.

    Google Scholar 

  35. Negera E, Gadisa E, Hussein J, Engers H, et al. Treatment response of cutaneous leishmaniasis due to Leishmania aethiopica to cryotherapy and generic sodium stibogluconate from patients in Silti, Ethiopia. Trans R Soc Trop Med Hyg. 2012;106(8):496–503.

    Article  PubMed  CAS  Google Scholar 

  36. Akuffo HO, Fehniger TE, Britton S. Differential recognition of Leishmania aethiopica antigens by lymphocytes from patients with local and diffuse cutaneous leishmaniasis. Evidence for antigen-induced immune suppression. J Immunol. 1988;141(7):2461–6.

    PubMed  CAS  Google Scholar 

  37. Longoni SS, Marin C, Sanchez-Moreno M. Excreted Leishmania peruviana and Leishmania amazonensis iron-superoxide dismutase purification: specific antibody detection in Colombian patients with cutaneous leishmaniasis. Free Radic Biol Med. 2014;69:26–34.

    Article  PubMed  CAS  Google Scholar 

  38. Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol. 2012;2:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hassani K, Shio MT, Martel C, Faubert D. Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes. PLoS One. 2014;9(4):e95007.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Depledge DP, Evans KJ, Ivens AC, Aziz N, et al. Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl Trop Dis. 2009;3(7):e476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gupta SK, Bencurova E, Srivastava M, Pahlavan P. Improving re-annotation of annotated eukaryotic genomes. In: Big data analytics in genomics. Cham: Springer; 2016. p. 171–95.

    Chapter  Google Scholar 

  42. Gupta SK, Kupper M, Ratzka C, Feldhaar H, et al. Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing. BMC Genomics. 2015;16:540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Torres F, Arias-Carrasco R, Caris-Maldonado JC, Barral A, et al. LeishDB: a database of coding gene annotation and non-coding RNAs in Leishmania braziliensis. Database. 2017;2017:bax047. https://doi.org/10.1093/database/bax047. [1758-0463 (Electronic)]

    Article  PubMed Central  CAS  Google Scholar 

  44. Pigott DM, Bhatt S, Golding N, Duda KA, et al. Global distribution maps of the leishmaniases. elife. 2014;3

    Google Scholar 

  45. http://eupathdb.org

  46. Aurrecoechea C, Barreto A, Basenko EY, Brestelli J, et al. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Res. 2017;45(D1):D581–d591.

    Article  PubMed  CAS  Google Scholar 

  47. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457–62.

    Article  PubMed  CAS  Google Scholar 

  48. http://www.genedb.org

  49. Logan-Klumpler FJ, De Silva N, Boehme U, Rogers MB, et al. GeneDB—an annotation database for pathogens. Nucleic Acids Res. 2012;40(Database issue):D98–108.

    Article  PubMed  CAS  Google Scholar 

  50. http://trypsNetDB.org

  51. Gazestani VH, Yip CW, Nikpour N, Berghuis N, et al. TrypsNetDB: an integrated framework for the functional characterization of trypanosomatid proteins. PLoS Negl Trop Dis. 2017;11(2):e0005368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. http://biocyc.org/LEISH/organism-summary?object=LEISH

  53. Saunders EC, MacRae JI, Naderer T, Ng M, et al. LeishCyc: a guide to building a metabolic pathway database and visualization of metabolomic data. Methods Mol Biol. 2012;881:505–29.

    Article  PubMed  CAS  Google Scholar 

  54. http://biomedinformri.com/leishmicrosat

  55. Dikhit MR, Moharana KC, Sahoo BR, Sahoo GC, et al. LeishMicrosatDB: open source database of repeat sequences detected in six fully sequenced Leishmania genomes. Database. 2014;2014:bau078. https://doi.org/10.1093/database/bau078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. http://www.nccs.res.in/LmSmdb

  57. Patel P, Mandlik V, Singh S. LmSmdB: an integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni. Genom Data. 2016;7:115–8.

    Article  PubMed  Google Scholar 

  58. http://bioinfo08.ibi.unicamp.br/leishmania

  59. Real F, Vidal RO, Carazzolle MF, Mondego JM, Costa GG, Herai RH, et al. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res. 2013;20(6):567–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. http://cpdbldv.biomedinformri.com

  61. Rana S, Dikhit MR, Rani M, Moharana KC, Sahoo GC, Das P. CPDB: cysteine protease annotation database in Leishmania species. Integr Biol (Camb). 2012;4(11):1351–7.

    Article  CAS  Google Scholar 

  62. http://biomedinformri.org/calp

  63. Dikhit MR, Nathasharma YP, Patel L, Rana SP, et al. A comparative protein function analysis database of different Leishmania strains. Bioinformation. 2011;6(1):20–2.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Waugh B, Ghosh A, Bhattacharyya D, Ghoshal N, et al. In silico work flow for scaffold hopping in Leishmania. BMC Res Notes. 2014;7:802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. http://www.ebi.ac.uk/compneur-srv/biomodels-main/MODEL1507180059

  66. Chavali AK, Whittemore JD, Eddy JA, Williams KT, et al. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol. 2008;4:177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. http://www.leishdb.com

  68. Hernandez-Santana YE, Ontoria E, Gonzalez-Garcia AC, Quispe-Ricalde MA, et al. The challenge of stability in high-throughput gene expression analysis: comprehensive selection and evaluation of reference genes for BALB/c mice spleen samples in the Leishmania infantum infection model. PLoS One. 2016;11(9):e0163219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Patino LH, Ramirez JD. RNA-seq in kinetoplastids: a powerful tool for the understanding of the biology and host-pathogen interactions. Infect Genet Evol. 2017;49:273–82.

    Article  PubMed  CAS  Google Scholar 

  70. Kima PE. Leishmania molecules that mediate intracellular pathogenesis. Microbes Infect. 2014;16(9):721–6.

    Article  PubMed  CAS  Google Scholar 

  71. Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Beattie L, d’El-Rei Hermida M, Moore JW, Maroof A, et al. A transcriptomic network identified in uninfected macrophages responding to inflammation controls intracellular pathogen survival. Cell Host Microbe. 2013;14(3):357–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Fernandes MC, Dillon LA, Belew AT, Bravo HC. Dual transcriptome profiling of Leishmania-infected human macrophages reveals distinct reprogramming signatures. MBio. 2016;7(3):e00027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Christensen SM, Dillon LA, Carvalho LP, Passos S, et al. Meta-transcriptome profiling of the human-Leishmania braziliensis cutaneous lesion. PLoS Negl Trop Dis. 2016;10(9):e0004992.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kumar D, Singh R, Bhandari V, Kulshrestha A, et al. Biomarkers of antimony resistance: need for expression analysis of multiple genes to distinguish resistance phenotype in clinical isolates of Leishmania donovani. Parasitol Res. 2012;111(1):223–30.

    Article  PubMed  Google Scholar 

  76. Schriefer A, Wilson ME, Carvalho EM. Recent developments leading toward a paradigm switch in the diagnostic and therapeutic approach to human leishmaniasis. Curr Opin Infect Dis. 2008;21(5):483–8.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Braun P, Tasan M, Dreze M, Barrios-Rodiles M, et al. An experimentally derived confidence score for binary protein-protein interactions. Nat Methods. 2009;6(1):91–7.

    Article  PubMed  CAS  Google Scholar 

  78. Gupta SK, Gross R, Dandekar T. An antibiotic target ranking and prioritization pipeline combining sequence, structure and network-based approaches exemplified for Serratia marcescens. Gene. 2016;591(1):268–78.

    Article  PubMed  CAS  Google Scholar 

  79. Kaltdorf M, Srivastava M, Gupta SK, Liang C, et al. Systematic identification of anti-fungal drug targets by a metabolic network approach. Front Mol Biosci. 2016;3:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Walker DM, Oghumu S, Gupta G, McGwire BS, et al. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci. 2014;71(7):1245–63.

    Article  PubMed  CAS  Google Scholar 

  81. Remmele CW, Luther CH, Balkenhol J, Dandekar T, et al. Integrated inference and evaluation of host-fungi interaction networks. Front Microbiol. 2015;6:764.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kotlyar M, Pastrello C, Pivetta F, Lo Sardo A, et al. In silico prediction of physical protein interactions and characterization of interactome orphans. Nat Methods. 2015;12(1):79–84.

    Article  PubMed  CAS  Google Scholar 

  83. Bader JS, Chaudhuri A, Rothberg JM, Chant J. Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol. 2004;22(1):78–85.

    Article  PubMed  CAS  Google Scholar 

  84. Lieke T, Nylen S, Eidsmo L, McMaster WR, et al. Leishmania surface protein gp63 binds directly to human natural killer cells and inhibits proliferation. Clin Exp Immunol. 2008;153(2):221–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ammari MG, Gresham CR, McCarthy FM, Nanduri B. HPIDB 2.0: a curated database for host-pathogen interactions. Database. 2016;2016:baw103. https://doi.org/10.1093/database/baw103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Durmus Tekir S, Cakir T, Ardic E, Sayilirbas AS, et al. PHISTO: pathogen-host interaction search tool. Bioinformatics. 2013;29(10):1357–8.

    Article  PubMed  CAS  Google Scholar 

  87. Rezende AM, Folador EL, Resende D de M, Ruiz JC. Computational prediction of protein-protein interactions in Leishmania predicted proteomes. PLoS One. 2012;7(12):e51304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Gazestani VH, Nikpour N, Mehta V, Najafabadi HS, et al. A protein complex map of Trypanosoma brucei. PLoS Negl Trop Dis. 2016;10(3):e0004533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Akhoon BA, Slathia PS, Sharma P, Gupta SK, et al. In silico identification of novel protective VSG antigens expressed by Trypanosoma brucei and an effort for designing a highly immunogenic DNA vaccine using IL-12 as adjuvant. Microb Pathog. 2011;51(1–2):77–87.

    Article  PubMed  CAS  Google Scholar 

  90. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet. 2005;366(9496):1561–77.

    Article  PubMed  CAS  Google Scholar 

  91. Rezvan H, Moafi M. An overview on Leishmania vaccines: a narrative review article. Vet Res Forum. 2015;6(1):1–7.

    PubMed  PubMed Central  Google Scholar 

  92. Kedzierski L. Leishmaniasis vaccine: where are we today? J Glob Infect Dis. 2010;2(2):177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ahuja SS, Reddick RL, Sato N, Montalbo E, et al. Dendritic cell (DC)-based anti-infective strategies: DCs engineered to secrete IL-12 are a potent vaccine in a murine model of an intracellular infection. J Immunol. 1999;163(7):3890–7.

    PubMed  CAS  Google Scholar 

  94. Gupta SK, Smita S, Sarangi AN, Srivastava M, et al. In silico CD4+ T-cell epitope prediction and HLA distribution analysis for the potential proteins of Neisseria meningitidis serogroup B--a clue for vaccine development. Vaccine. 2010;28(43):7092–7.

    Article  PubMed  CAS  Google Scholar 

  95. Costa CH, Peters NC, Maruyama SR, de Brito EC Jr, et al. Vaccines for the leishmaniases: proposals for a research agenda. PLoS Negl Trop Dis. 2011;5(3):e943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zaph C, Uzonna J, Beverley SM, Scott P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med. 2004;10(10):1104–10.

    Article  PubMed  CAS  Google Scholar 

  97. Brito RC, Guimaraes FG, Velloso JP, Correa-Oliveira R, et al. Immunoinformatics features linked to Leishmania vaccine development: data integration of experimental and in silico studies. Int J Mol Sci. 2017;18(2)

    Google Scholar 

  98. Del Tordello E, Serruto D. Functional genomics studies of the human pathogen Neisseria meningitidis. Brief Funct Genomics. 2013;12(4):328–40.

    Article  PubMed  CAS  Google Scholar 

  99. Gorringe AR, Pajon R. Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum Vaccin Immunother. 2012;8(2):174–83.

    Article  PubMed  CAS  Google Scholar 

  100. Martin NG, Snape MD. A multicomponent serogroup B meningococcal vaccine is licensed for use in Europe: what do we know, and what are we yet to learn? Expert Rev Vaccines. 2013;12(8):837–58.

    Article  PubMed  CAS  Google Scholar 

  101. Gupta SK, Srivastava M, Akhoon BA, Smita S, et al. Identification of immunogenic consensus T-cell epitopes in globally distributed influenza-A H1N1 neuraminidase. Infect Genet Evol. 2011;11(2):308–19.

    Article  PubMed  CAS  Google Scholar 

  102. Gupta SK, Singh A, Srivastava M, Gupta SK, et al. In silico DNA vaccine designing against human papillomavirus (HPV) causing cervical cancer. Vaccine. 2009;28(1):120–31.

    Article  PubMed  CAS  Google Scholar 

  103. Ranjbar MM, Gupta SK, Ghorban K, Nabian S, et al. Designing and modeling of complex DNA vaccine based on tropomyosin protein of Boophilus genus tick. Appl Biochem Biotechnol. 2015;175(1):323–39.

    Article  PubMed  CAS  Google Scholar 

  104. Gupta SK, Srivastava M, Akhoon BA, Gupta SK, et al. In silico accelerated identification of structurally conserved CD8+ and CD4+ T-cell epitopes in high-risk HPV types. Infect Genet Evol. 2012;12(7):1513–8.

    Article  PubMed  CAS  Google Scholar 

  105. Baloria U, Akhoon BA, Gupta SK, Sharma S, et al. In silico proteomic characterization of human epidermal growth factor receptor 2 (HER-2) for the mapping of high affinity antigenic determinants against breast cancer. Amino Acids. 2012;42(4):1349–60.

    Article  PubMed  CAS  Google Scholar 

  106. Singh KP, Verma N, Akhoon BA, Bhatt V, et al. Sequence-based approach for rapid identification of cross-clade CD8+ T-cell vaccine candidates from all high-risk HPV strains. 3 Biotech. 2016;6(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Luo H, Lin Y, Gao F, Zhang CT, et al. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res. 2014;42(Database issue):D574–80.

    Article  PubMed  CAS  Google Scholar 

  108. Ravooru N, Ganji S, Sathyanarayanan N, Nagendra HG. In silico analysis of hypothetical proteins unveils putative metabolic pathways and essential genes in Leishmania donovani. Front Genet. 2014;5:291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2.

    Article  PubMed  CAS  Google Scholar 

  110. Zirkel J, Cecil A, Schäfer F, Rahlfs S, et al. Analyzing thiol-dependent redox networks in the presence of methylene blue and other antimalarial agents with RT-PCR-supported in silico modeling. Bioinform Biol Insights. 2012;6:287–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Akhoon BA, Gupta SK, Dhaliwal G, Srivastava M, et al. Virtual screening of specific chemical compounds by exploring E.Coli NAD+−dependent DNA ligase as a target for antibacterial drug discovery. J Mol Model. 2011;17(2):265–73.

    Article  PubMed  CAS  Google Scholar 

  112. Srivastava M, Gupta SK, Abhilash PC, Singh N. Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches. J Mol Model. 2012;18(7):2971–9.

    Article  PubMed  CAS  Google Scholar 

  113. Srivastava M, Akhoon BA, Gupta SK, Gupta SK. Development of resistance against blackleg disease in Brassica oleracea var. botrytis through in silico methods. Fungal Genet Biol. 2010;47(10):800–8.

    Article  PubMed  Google Scholar 

  114. Akhoon BA, Gupta SK, Verma V, Dhaliwal G, et al. In silico designing and optimization of anti-breast cancer antibody mimetic oligopeptide targeting HER-2 in women. J Mol Graph Model. 2010;28(7):664–9.

    Article  PubMed  CAS  Google Scholar 

  115. Akhoon BA, Singh KP, Varshney M, Gupta SK, et al. Understanding the mechanism of atovaquone drug resistance in Plasmodium falciparum cytochrome b mutation Y268S using computational methods. PLoS One. 2014;9(10):e110041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Gupta SK, Gupta SK, Smita S, Srivastava M, et al (2011) Computational analysis and modeling the effectiveness of ‘Zanamivir’ targeting neuraminidase protein in pandemic H1N1 strains. Infect Genet Evol 11 (5):1072–1082.

    Google Scholar 

  117. Song CM, Lim SJ, Tong JC. Recent advances in computer-aided drug design. Brief Bioinform. 2009;10(5):579–91.

    Article  PubMed  CAS  Google Scholar 

  118. Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12:2694–718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev. 2014;66(1):334–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Field MC, Horn D, Fairlamb AH, Ferguson MA, et al. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol. 2017;15(4):217–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Sundar S, Sinha PK, Rai M, Verma DK, et al. Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet. 2011;377(9764):477–86.

    Article  PubMed  CAS  Google Scholar 

  122. Coulibaly B, Pritsch M, Bountogo M, Meissner PE, et al. Efficacy and safety of triple combination therapy with artesunate-amodiaquine-methylene blue for falciparum malaria in children: a randomized controlled trial in Burkina Faso. J Infect Dis. 2015;211(5):689–97.

    Article  PubMed  CAS  Google Scholar 

  123. Kunz M, Liang C, Nilla S, Cecil A, et al. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development. Database. 2016;2016:baw041. https://doi.org/10.1093/database/baw041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Fliri AF, Loging WT, Volkmann RA. Cause-effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci. 2010;31(11):547–55.

    Article  PubMed  CAS  Google Scholar 

  125. Iorio F, Saez-Rodriguez J, di Bernardo D. Network based elucidation of drug response: from modulators to targets. BMC Syst Biol. 2013;7:139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank DFG (TR124/B1) and the land of Bavaria for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dandekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S.K., Dandekar, T. (2018). Bioinformatics in Leishmania Drug Design. In: Ponte-Sucre, A., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Cham. https://doi.org/10.1007/978-3-319-74186-4_13

Download citation

Publish with us

Policies and ethics