Ivens AC, Peacock CS, Worthey EA, Murphy L, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309:436–42.
PubMed
PubMed Central
CrossRef
Google Scholar
Peacock CS, Seeger K, Harris D, Murphy L, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39:839–47.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Imamura H, Downing T, Van den Broeck F, Sanders MJ, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. Elife. 2016;5:e12613.
PubMed
PubMed Central
CrossRef
Google Scholar
Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–26.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Faraut-Gambarelli F, Piarroux R, Deniau M, Giusiano B, et al. In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: a study of 37 strains collected from patients with visceral leishmaniasis. Antimicrob Agents Chemother. 1997;41:827–30.
PubMed
PubMed Central
CAS
Google Scholar
Lira R, Sundar S, Makharia A, Kenney R, et al. Evidence that the high incidence of treatment failures in Indian kalaazar is due to the emergence of antimony-resistant strains of Leishmania donovani. J Infect Dis. 1999;180:564–7.
PubMed
CrossRef
CAS
Google Scholar
Palacios R, Osorio LE, Grajalew LF, Ochoa MT. Treatment failure in children in a randomized clinical trial with 10 and 20 days of meglumine antimonate for cutaneous leishmaniasis due to Leishmania Viannia species. Am J Trop Med Hyg. 2001;64:187–93.
PubMed
CrossRef
CAS
Google Scholar
Sundar S. Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health. 2001;6:849–54.
PubMed
CrossRef
CAS
Google Scholar
Abdo MG, Elamin WM, Khalil EA, Mukhtar MM. Antimony-resistant Leishmania donovani in eastern Sudan: incidence and in vitro correlation. East Mediterr Health J. 2003;9:837–43.
PubMed
CAS
Google Scholar
Das VN, Ranjan A, Bimal S, Siddique NA, et al. Magnitude of unresponsiveness to sodium stibogluconate in the treatment of visceral leishmaniasis in Bihar. Natl Med J India. 2005;18:131–3.
PubMed
CAS
Google Scholar
Hadighi R, Mohebali M, Boucher P, Hajjaran H, et al. Unresponsiveness to Glucantime treatment in Iranian cutaneous leishmaniasis due to drug-resistant Leishmania tropica parasites. PLoS Med. 2006;3:e162.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Rojas R, Valderrama L, Valderrama M, Varona MX, et al. Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. J Infect Dis. 2006;193:1375–83.
PubMed
CrossRef
CAS
Google Scholar
Holzer TR, McMaster WR, Forney JD. Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol. 2006;146:198–218.
PubMed
CrossRef
CAS
Google Scholar
Leifso K, Cohen-Freue G, Dogra N, Murray A, et al. Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol. 2007;152:35–46.
PubMed
CrossRef
CAS
Google Scholar
Cohen-Freue G, Holzer TR, Forney JD, McMaster WR. Global gene expression in Leishmania. Int J Parasitol. 2007;37:1077–86.
PubMed
CrossRef
CAS
Google Scholar
El-Sayed NM, Myler PJ, Blandin G, Berriman M, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309:404–9.
PubMed
CrossRef
CAS
Google Scholar
Rogers MB, Hilley JD, Dickens NJ, Wilkes J, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21:2129–42.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Fiebig M, Kelly S, Gluenz E. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog. 2015;11:e1005186.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Ubeda JM, Légaré D, Raymond F, Ouameur AA, et al. Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol. 2008;9:R115.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Leprohon P, Légaré D, Raymond F, Hardiman G, et al. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res. 2009;37:1387–99.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Downing T, Imamura H, Decuypere S, Clark TG, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21:2143–56.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Mannaert A, Downing T, Imamura H, Dujardin JC. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol. 2012;28:370–6.
PubMed
CrossRef
CAS
Google Scholar
Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol. 2007;156:93–101.
PubMed
CrossRef
CAS
Google Scholar
Haile S, Papadopoulou B. Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol. 2007;10:569–77.
PubMed
CrossRef
CAS
Google Scholar
Lee MG, Atkinson BL, Giannini SH, Van der Ploeg LH. Structure and expression of the hsp 70 gene family of Leishmania major. Nucleic Acids Res. 1988;16:9567–85.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Quijada L, Soto M, Alonso C, Requena JM. Analysis of post-transcriptional regulation operating on transcription products of the tandemly linked Leishmania infantum hsp70 genes. J Biol Chem. 1997;272:4493–9.
PubMed
CrossRef
CAS
Google Scholar
Holzer TR, Mishra KK, LeBowitz JH, Forney JD. Coordinate regulation of a family of promastigote-enriched mRNAs by the 3′UTR PRE element in Leishmania mexicana. Mol Biochem Parasitol. 2008;157:54–64.
PubMed
CrossRef
CAS
Google Scholar
Saxena A, Lahav T, Holland N, Aggarwal G, et al. Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol. 2007;152:53–65.
PubMed
CrossRef
CAS
Google Scholar
Almeida R, Gilmartin BJ, McCann SH, Norrish A, et al. Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Mol Biochem Parasitol. 2004;136:87–100.
PubMed
CrossRef
CAS
Google Scholar
Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, et al. Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Mol Biochem Parasitol. 2004;136:71–86.
PubMed
CrossRef
CAS
Google Scholar
Rochette A, Raymond F, Ubeda JM, Smith M, et al. Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics. 2008;9:255.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Guimond C, Trudel N, Brochu C, Marquis N, et al. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res. 2003;31:5886–96.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Quijada L, Soto M, Requena JM. Genomic DNA macroarrays as a tool for analysis of gene expression in Leishmania. Exp Parasitol. 2005;111:64–70.
PubMed
CrossRef
CAS
Google Scholar
Depledge DP, Evans KJ, Ivens AC, Aziz N, et al. Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl Trop Dis. 2009;3:e476.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Leprohon P, Légaré D, Girard I, Papadopoulou B, et al. Modulation of Leishmania ABC protein gene expression through life stages and among drug-resistant parasites. Eukaryot Cell. 2006;5:1713–25.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
McNicoll F, Drummelsmith J, Müller M, Madore E, et al. A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics. 2006;6:3567–81.
PubMed
CrossRef
CAS
Google Scholar
Walther TC, Mann M. Mass spectrometry-based proteomics in cell biology. J Cell Biol. 2010;190:491–500.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Karas M, Hillemkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 kDa. Anal Chem. 1988;60:2299–301.
PubMed
CrossRef
CAS
Google Scholar
Tanaka K, Waki H, Ido Y, Akita S, et al. Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3.
CrossRef
CAS
Google Scholar
Fenn J, Mann M, Meng CK, Wong SF, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246:64–71.
PubMed
CrossRef
CAS
Google Scholar
Cuervo P, Domont GB, De Jesus JB. Proteomics of trypanosomatids of human medical importance. J Proteomics. 2010;73:845–67.
PubMed
CrossRef
CAS
Google Scholar
Paape D, Aebischer T. Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development. J Proteomics. 2011;74:1614–24.
PubMed
CrossRef
CAS
Google Scholar
Paape D, Barrios-Llerena ME, Le BT, Mackay L, et al. Gel free analysis of the proteome of intracellular Leishmania mexicana. Mol Biochem Parasitol. 2010;169:108–14.
PubMed
CrossRef
CAS
Google Scholar
Tsigankov P, Gherardini PF, Helmer-Citterich M, Späth GF, et al. Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif. J Proteome Res. 2013;12:3405–12.
PubMed
CrossRef
CAS
Google Scholar
Braga MS, Neves LX, Campos JM, Roatt BM, et al. Shotgun proteomics to unravel the complexity of the Leishmania infantum exoproteome and the relative abundance of its constituents. Mol Biochem Parasitol. 2014;195:43–53.
PubMed
CrossRef
CAS
Google Scholar
Pawar H, Sahasrabuddhe NA, Renuse S, Keerthikumar S, et al. A proteogenomic approach to map the proteome of an unsequenced pathogen - Leishmania donovani. Proteomics. 2012;12:832–44.
PubMed
CrossRef
CAS
Google Scholar
Pescher P, Blisnick T, Bastin P, Spath GF. Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation. Cell Microbiol. 2011;13:978–91.
PubMed
CrossRef
CAS
Google Scholar
Biyani N, Madhubala R. Quantitative proteomic profiling of the promastigotes and the intracellular amastigotes of Leishmania donovani isolates identifies novel proteins having a role in Leishmania differentiation and intracellular survival. Biochim Biophys Acta. 2012;1824:1342–50.
PubMed
CrossRef
CAS
Google Scholar
Sardar AH, Kumar S, Kumar A, Purkait B, et al. Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses. J Proteomics. 2013;81:185–99.
PubMed
CrossRef
CAS
Google Scholar
Singh AK, Roberts S, Ullman B, Madhubala R. A quantitative proteomic screen to identify potential drug resistance mechanism in alpha-difluoromethylornithine (DFMO) resistant Leishmania donovani. J Proteomics. 2014;102:44–59.
PubMed
CrossRef
CAS
Google Scholar
Tsigankov P, Gherardini PF, Helmer-Citterich M, Späth GF, et al. Regulation dynamics of Leishmania differentiation: deconvoluting signals and identifying phosphorylation trends. Mol Cell Proteomics. 2014;13:1787–99.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Zilberstein D. Proteomic analysis of posttranslational modifications using iTRAQ in Leishmania. Methods Mol Biol. 2015;1201:261–8.
PubMed
CrossRef
CAS
Google Scholar
Wyllie S, Roberts AJ, Norval S, Patterson S, et al. Activation of bicyclic nitro-drugs by a novel nitroreductase (NTR2) in Leishmania. PLoS Pathog. 2016;12:e1005971.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Acestor N, Masina S, Walker J, Saravia NG, et al. Establishing two-dimensional gels for the analysis of Leishmania proteomes. Proteomics. 2002;2:877–9.
PubMed
CrossRef
CAS
Google Scholar
Góngora R, Acestor N, Quadroni M, Fasel N, et al. Mapping the proteome of Leishmania Viannia parasites using two-dimensional polyacrylamide gel electrophoresis and associated technologies. Biomédica. 2003;23:153–60.
PubMed
CrossRef
Google Scholar
Drummelsmith J, Brochu V, Girard I, Messier N, et al. Proteome mapping of the protozoan parasite Leishmania and application to the study of drug targets and resistance mechanisms. Mol Cell Proteomics. 2003;2:146–55.
PubMed
CrossRef
CAS
Google Scholar
Brobey RK, Mei FC, Cheng X, Soong L. Comparative two-dimensional gel electrophoresis maps for promastigotes of Leishmania amazonensis and Leishmania major. Braz J Infect Dis. 2006;10:1–6.
PubMed
CrossRef
Google Scholar
Brobey RK, Soong L. Establishing a liquid-phase IEF in combination with 2-DE for the analysis of Leishmania proteins. Proteomics. 2007;7:116–20.
PubMed
CrossRef
CAS
Google Scholar
Cuervo P, de Jesus JB, Junqueira M, Mendonça-Lima L, et al. Proteome analysis of Leishmania (Viannia) braziliensis by two-dimensional gel electrophoresis and mass spectrometry. Mol Biochem Parasitol. 2007;154:6–21.
PubMed
CrossRef
CAS
Google Scholar
Costa MM, Andrade HM, Bartholomeu DC, Freitas LM, et al. Analysis of Leishmania chagasi by 2-D difference gel electrophoresis (2-D DIGE) and immunoproteomic: identification of novel candidate antigens for diagnostic tests and vaccine. J Proteome Res. 2011;10:2172–84.
PubMed
CrossRef
CAS
Google Scholar
Aebischer T. Leishmania spp. proteome data sets: a comprehensive resource for vaccine development to target visceral leishmaniasis. Front Immunol. 2014;5:260.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
da Fonseca Pires S, Fialho LC Jr, Silva SO, Melo MN, et al. Identification of virulence factors in Leishmania infantum strains by a proteomic approach. J Proteome Res. 2014;13:1860–72.
PubMed
CrossRef
CAS
Google Scholar
McCall LI, Zhang WW, Dejgaard K, Atayde VD, et al. Adaptation of Leishmania donovani to cutaneous and visceral environments: in vivo selection and proteomic analysis. J Proteome Res. 2015;14:1033–59.
PubMed
CrossRef
CAS
Google Scholar
Alcolea PJ, Tuñón GI, Alonso A, García-Tabares F, et al. Differential protein abundance in promastigotes of nitric oxide-sensitive and resistant Leishmania chagasi strains. Proteomics Clin Appl. 2016;10:1132–46.
PubMed
CrossRef
CAS
Google Scholar
Yau WL, Lambertz U, Colineau L, Pescher P, et al. Phenotypic characterization of a Leishmania donovani cyclophilin 40 null mutant. J Eukaryot Microbiol. 2016;63:823–33.
PubMed
CrossRef
CAS
Google Scholar
Thiel M, Bruchhaus I. Comparative proteome analysis of Leishmania donovani at different stages of transformation from promastigotes to amastigotes. Med Microbiol Immunol. 2001;190:33–6.
PubMed
CrossRef
CAS
Google Scholar
El Fakhry Y, Ouellette M, Papadopoulou B. A proteomic approach to identify developmentally regulated proteins in Leishmania infantum. Proteomics. 2002;2:1007–17.
PubMed
CrossRef
Google Scholar
Bente M, Harder S, Wiesgigl M, Heukeshoven J, et al. Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics. 2003;3:1811–29.
PubMed
CrossRef
CAS
Google Scholar
Nugent PG, Karsani SA, Wait R, Tempero J, et al. Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol. 2004;136:51–62.
PubMed
CrossRef
CAS
Google Scholar
Walker J, Vasquez JJ, Gomez MA, Drummelsmith J, et al. Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Mol Biochem Parasitol. 2006;147:64–73.
PubMed
CrossRef
CAS
Google Scholar
Foucher AL, Papadopoulou B, Ouellette M. Prefractionation by digitonin extraction increases representation of the cytosolic and intracellular proteome of Leishmania infantum. J Proteome Res. 2006;5:1741–50.
PubMed
CrossRef
CAS
Google Scholar
Rosenzweig D, Smith D, Opperdoes F, Stern S, et al. Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J. 2008a;22:590–602.
PubMed
CrossRef
CAS
Google Scholar
Morales MA, Watanabe R, Laurent C, Lenormand P, et al. Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics. 2008;8:350–63.
PubMed
CrossRef
CAS
Google Scholar
Mojtahedi Z, Clos J, Kamali-Sarvestani E. Leishmania major: identification of developmentally regulated proteins in procyclic and metacyclic promastigotes. Exp Parasitol. 2008;119:422–9.
PubMed
CrossRef
CAS
Google Scholar
Paape D, Lippuner C, Schmid M, Ackermann R, et al. Transgenic, fluorescent Leishmania mexicana allow direct analysis of the proteome of intracellular amastigotes. Mol Cell Proteomics. 2008;7:1688–701.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Nirujogi RS, Pawar H, Renuse S, Kumar P, et al. Moving from unsequenced to sequenced genome: reanalysis of the proteome of Leishmania donovani. J Proteomics. 2014;97:48–61.
PubMed
CrossRef
CAS
Google Scholar
Rosenzweig D, Smith D, Myler PJ, Olafson RW, et al. Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics. 2008b;8:1843–50.
PubMed
CrossRef
CAS
Google Scholar
Hem S, Gherardini PF, Osorio y Fortéa J, Hourdel V, et al. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Proteomics. 2010;10:3868–83.
PubMed
CrossRef
CAS
Google Scholar
Moreira D de S, Pescher P, Laurent C, Lenormand P, et al. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology. Proteomics. 2015;15:2999–3019.
CrossRef
CAS
Google Scholar
Bachmaier S, Witztum R, Tsigankov P, Koren R, et al. Protein kinase A signaling during bidirectional axenic differentiation in Leishmania. Int J Parasitol. 2016;46:75–82.
PubMed
CrossRef
CAS
Google Scholar
Morales MA, Watanabe R, Dacher M, Chafey P, et al. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci USA. 2010;107:8381–6.
PubMed
CrossRef
PubMed Central
Google Scholar
de Oliveira AH, Ruiz JC, Cruz AK, Greene LJ, et al. Subproteomic analysis of soluble proteins of the microsomal fraction from two Leishmania species. Comp Biochem Physiol Part D Genomic Proteomics. 2006;1:300–8.
CrossRef
CAS
Google Scholar
Hide M, Ritleng AS, Brizard JP, Monte-Allegre A, et al. Leishmania infantum: tuning digitonin fractionation for comparative proteomic of the mitochondrial protein content. Parasitol Res. 2008;103:989–92.
PubMed
CrossRef
CAS
Google Scholar
Silverman JM, Chan SK, Robinson DP, Dwyer DM, et al. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol. 2008;9:R35.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Cuervo P, De Jesus JB, Saboia-Vahia L, Mendonça-Lima L, et al. Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. J Proteomics. 2009;73:79–92.
PubMed
CrossRef
CAS
Google Scholar
Brotherton MC, Racine G, Ouameur AA, Leprohon P, et al. Analysis of membrane-enriched and high molecular weight proteins in Leishmania infantum promastigotes and axenic amastigotes. J Proteome Res. 2012;11:3974–85.
PubMed
CrossRef
CAS
Google Scholar
Lynn MA, Marr AK, McMaster WR. Differential quantitative proteomic profiling of Leishmania infantum and Leishmania mexicana density gradient separated membranous fractions. J Proteomics. 2013;82:179–92.
PubMed
CrossRef
CAS
Google Scholar
Santarém N, Racine G, Silvestre R, Cordeiro-da-Silva A, et al. Exoproteome dynamics in Leishmania infantum. J Proteomics. 2013;84:106–18.
PubMed
CrossRef
CAS
Google Scholar
Atayde VD, Aslan H, Townsend S, Hassani K, et al. Exosome secretion by the parasitic protozoan Leishmania within the sand fly midgut. Cell Rep. 2015;13:957–67.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Kumar A, Misra P, Sisodia B, Shasany AK, et al. Proteomic analyses of membrane enriched proteins of Leishmania donovani Indian clinical isolate by mass spectrometry. Parasitol Int. 2015;64:36–42.
PubMed
CrossRef
CAS
Google Scholar
Lima BS, Fialho LC Jr, Pires SF, Tafuri WL, et al. Immunoproteomic and bioinformatic approaches to identify secreted Leishmania amazonensis, L. braziliensis, and L. infantum proteins with specific reactivity using canine serum. Vet Parasitol. 2016;223:115–9.
PubMed
CrossRef
CAS
Google Scholar
Drummelsmith J, Girard I, Trudel N, Ouellette M. Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance. J Biol Chem. 2004;279:33273–80.
PubMed
CrossRef
CAS
Google Scholar
Vergnes B, Gourbal B, Girard I, Sundar S, et al. A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics. 2007;6:88–101.
PubMed
CrossRef
CAS
Google Scholar
El Fadili K, Drummelsmith J, Roy G, Jardim A, et al. Down regulation of KMP-11 in Leishmania infantum axenic antimony resistant amastigotes as revealed by a proteomic screen. Exp Parasitol. 2009;123:51–7.
PubMed
CrossRef
CAS
Google Scholar
Matrangolo FS, Liarte DB, Andrade LC, de Melo MF, et al. Comparative proteomic analysis of antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol. 2013;190:63–75.
PubMed
CrossRef
CAS
Google Scholar
Carnielli JB, de Andrade HM, Pires SF, Chapeaurouge AD, et al. Proteomic analysis of the soluble proteomes of miltefosine-sensitive and -resistant Leishmania infantum chagasi isolates obtained from Brazilian patients with different treatment outcomes. J Proteomics. 2014;108:198–208.
PubMed
CrossRef
CAS
Google Scholar
Singh G, Chavan HD, Dey CS. Proteomic analysis of miltefosine-resistant Leishmania reveals the possible involvement of eukaryotic initiation factor 4A (eIF4A). Int J Antimicrob Agents. 2008a;31:584–6.
PubMed
CrossRef
CAS
Google Scholar
Singh G, Jayanarayan KG, Dey CS. Arsenite resistance in Leishmania and possible drug targets. Adv Exp Med Biol. 2008b;625:1–8.
PubMed
CrossRef
CAS
Google Scholar
Vincent IM, Racine G, Légaré D, Ouellette M. Mitochondrial proteomics of antimony and miltefosine resistant Leishmania infantum. Proteomes. 2015;3:328–46.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Akpunarlieva S, Weidt S, Lamasudin D, Naula C, et al. Integration of proteomics and metabolomics to elucidate metabolic adaptation in Leishmania. J Proteomics. 2017;155:85–98.
PubMed
CrossRef
CAS
Google Scholar
Sharma S, Singh G, Chavan HD, Dey CS. Proteomic analysis of wild type and arsenite-resistant Leishmania donovani. Exp Parasitol. 2009;123:369–76.
PubMed
CrossRef
CAS
Google Scholar
Kumar A, Sisodia B, Misra P, Sundar S, et al. Proteome mapping of overexpressed membrane-enriched and cytosolic proteins in sodium antimony gluconate (SAG) resistant clinical isolate of Leishmania donovani. Br J Clin Pharmacol. 2010;70:609–17.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Peláez RG, Muskus CE, Cuervo P, Marín-Villa M. Differential expression of proteins in Leishmania (Viannia) panamensis associated with mechanisms of resistance to meglumine antimoniate. Biomedica. 2012;32:418–29.
PubMed
CrossRef
Google Scholar
Walker J, Gongora R, Vasquez JJ, Drummelsmith J, et al. Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Mol Biochem Parasitol. 2012;183:166–76.
PubMed
CrossRef
CAS
Google Scholar
Messaritakis I, Christodoulou V, Mazeris A, Koutala E, et al. Drug resistance in natural isolates of Leishmania donovani s.l. promastigotes is dependent of Pgp170 expression. PLoS One. 2013;8:e65467.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Brotherton MC, Bourassa S, Leprohon P, Légaré D, et al. Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. PLoS One. 2013;8:e81899.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Brotherton MC, Bourassa S, Légaré D, Poirier GG, et al. Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist. 2014;4:126–32.
PubMed
PubMed Central
CrossRef
Google Scholar
Vacchina P, Norris-Mullins B, Carlson ES, Morales MA. A mitochondrial HSP70 (HSPA9B) is linked to miltefosine resistance and stress response in Leishmania donovani. Parasit Vectors. 2016;9:621.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
MacGillivray AJ, Rickwood D. The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. Eur J Biochem. 1974;41:181–90.
PubMed
CrossRef
CAS
Google Scholar
O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.
PubMed
Google Scholar
Anderson L, Anderson NG. High resolution two-dimensional electrophoresis of human plasma proteins. Proc Natl Acad Sci USA. 1977;74:5421–5.
PubMed
CrossRef
CAS
PubMed Central
Google Scholar
Bravo R, Celis JE. A search for differential polypeptide synthesis throughout the cell cycle of HeLa cells. J Cell Biol. 1980;84:795–802.
PubMed
CrossRef
CAS
Google Scholar
Taylor J, Anderson NL, Scandora AE Jr, Willard KE, et al. Design and implementation of a prototype human protein index. Clin Chem. 1982;28:861–6.
PubMed
CAS
Google Scholar
Handman E, Mitchell GF, Goding JW. Identification and characterization of protein antigens of Leishmania tropica isolates. J Immunol. 1981;126:508–12.
PubMed
CAS
Google Scholar
Saravia NG, Gemmell MA, Nance SL, Anderson NL. Two-dimensional electrophoresis used to differentiate the causal agents of American tegumentary leishmaniasis. Clin Chem. 1984;30:2048–52.
PubMed
CAS
Google Scholar
Fong D, Chang KP. Tubulin biosynthesis in the developmental cycle of a parasitic protozoan, Leishmania mexicana: changes during differentiation of motile and nonmotile stages. Proc Natl Acad Sci USA. 1981;78:7624–8.
PubMed
CrossRef
CAS
PubMed Central
Google Scholar
Arrebola R, Olmo A, Reche P, Garvey EP, et al. Isolation and characterization of a mutant dihydrofolate reductase-thymidylate synthase from methotrexate-resistant Leishmania cells. J Biol Chem. 1994;269:10590–6.
PubMed
CAS
Google Scholar
Görg A, Postel W, Günther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 1988;9:531–46.
PubMed
CrossRef
Google Scholar
Matsudaira PT. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987;262:10035–8.
PubMed
CAS
Google Scholar
Carrette O, Burkhard PR, Sanchez JC, Hochstrasser DF. State-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research. Nat Protoc. 2006;1:812–23.
PubMed
CrossRef
CAS
Google Scholar
Rabilloud T, Chevallet M, Luche S, Lelong C. Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics. 2010;73:2064–77.
PubMed
CrossRef
CAS
Google Scholar
Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404:939–65.
PubMed
CrossRef
CAS
Google Scholar
Duncan MW, Aebersold R, Caprioli RM. The pros and cons of peptide-centric proteomics. Nat Biotechnol. 2010;28:659–64.
PubMed
CrossRef
CAS
Google Scholar
Biyani N, Singh AK, Mandal S, Chawla B. Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Mol Biochem Parasitol. 2011;179:91–9.
PubMed
CrossRef
CAS
Google Scholar
Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013;14:35–48.
PubMed
CrossRef
CAS
Google Scholar
Wiśniewski JR, Hein M, Cox J, Mann M. A “Proteomic Ruler” for protein copy number and concentration estimation without spike-in standards. Mol Cell Proteomics. 2014;13:3497–506.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Reddy PJ, Jain R, Paik YK, Downey R, et al. Personalized medicine in the age of pharmacoproteomics: a close up on India and need for social science engagement for responsible innovation in post-proteomic biology. Curr Pharmacogenomics Person Med. 2011;9:67–75.
PubMed
PubMed Central
CrossRef
Google Scholar
Matthews H, Hanison J, Nirmalan N. “Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes. 2016;4:E28.
PubMed
CrossRef
Google Scholar
Goldstein RL, Yang SN, Taldone T, Chang B, et al. Pharmacoproteomics identifies combinatorial therapy targets for diffuse large B cell lymphoma. J Clin Invest. 2015;125:4559–71.
PubMed
PubMed Central
CrossRef
Google Scholar
Shu S, Lin CY, He HH, Witwicki RM, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413–7.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Detke S, Katakura K, Chang KP. DNA amplification in arsenite resistant Leishmania. Exp Cell Res. 1989;180:161–70.
PubMed
CrossRef
CAS
Google Scholar
Ouellette M, Hettema E, Wust D, Fase-Fowler F, et al. Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO J. 1991;10:1009–16.
PubMed
PubMed Central
CAS
CrossRef
Google Scholar
Callahan HL, Beverley SM. Heavy metal resistance: A new role for P-glycoproteins in Leishmania. J Biol Chem. 1991;266:18427–30.
PubMed
CAS
Google Scholar
Bello AR, Nare B, Freedman D, Hardy L, et al. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc Natl Acad Sci USA. 1994;91:11442–6.
PubMed
CrossRef
CAS
PubMed Central
Google Scholar
Prasad V, Kaur J, Dey CS. Arsenite-resistant Leishmania donovani promastigotes express an enhanced membrane P-type adenosine triphosphatase activity that is sensitive to verapamil treatment. Parasitol Res. 2000;86:661–4.
PubMed
CrossRef
CAS
Google Scholar
Richard D, Kündig C, Ouellette M. A new type of high affinity folic acid transporter in the protozoan parasite Leishmania and deletion of its gene in methotrexate-resistant cells. J Biol Chem. 2002;277:29460–7.
PubMed
CrossRef
CAS
Google Scholar
HaimeurA GC, Pilote S, Mukhopadhyay R, Rosen BP, et al. Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Mol Microbiol. 1999;34:726–35.
CrossRef
Google Scholar
Brochu C, Wang J, Roy G, Messier N, et al. Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother. 2003;47:3073–9.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Ouellette M, Drummelsmith J, Papadopoulou B. Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat. 2004;7:257–66.
PubMed
CrossRef
CAS
Google Scholar
Ashutosh SS, Goyal N. Molecular mechanisms of antimony resistance in Leishmania. J Med Microbiol. 2007;56:143–53.
PubMed
CrossRef
CAS
Google Scholar
Ouellette M, Borst P. Drug resistance and P-glycoprotein gene amplification in the protozoan parasite Leishmania. Res Microbiol. 1991;142:737–46.
PubMed
CrossRef
CAS
Google Scholar
Beverley SM. Gene amplification in Leishmania. Annu Rev Microbiol. 1991;45:417–44.
PubMed
CrossRef
CAS
Google Scholar
Dey S, Papadopoulou B, Haimeur A, Roy G, et al. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol. 1994;67:49–57.
PubMed
CrossRef
CAS
Google Scholar
Dey S, Ouellette M, Lightbody J, Papadopoulou B, Rosen BP. An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci USA. 1996;93:2192–7.
PubMed
CrossRef
CAS
PubMed Central
Google Scholar
Mukhopadhyay R, Dey S, Xu N, Gage D, et al. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci USA. 1996;93:10383–7.
PubMed
CrossRef
CAS
PubMed Central
Google Scholar
Coderre JA, Beverley SM, Schimke RT, Santi DV. Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci USA. 1983;80:2132–6.
PubMed
CrossRef
CAS
PubMed Central
Google Scholar
Croft SL, Coombs GH. Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19:502–8.
PubMed
CrossRef
CAS
Google Scholar
Thakur CP, Sinha GP, Pandey AK, Kumar N, et al. Do the diminishing efficacy and increasing toxicity of sodium stibogluconate in the treatment of visceral leishmaniasis in Bihar, India, justify its continued use as a first-line drug? An observational study of 80 cases. Ann Trop Med Parasitol. 1998;92:561–9.
PubMed
CrossRef
CAS
Google Scholar
Sundar S, More DK, Singh MK, Singh VP, et al. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis. 2000;31:1104–1107s.
PubMed
CrossRef
CAS
Google Scholar
Perry MR, Wyllie S, Prajapati VK, Feldmann J, et al. Visceral leishmaniasis and arsenic: an ancient poison contributing to antimonial treatment failure in the Indian subcontinent? PLoS Negl Trop Dis. 2011;5:e1227.
PubMed
PubMed Central
CrossRef
Google Scholar
Berman JD, Chulay JD, Hendricks LD, Oster CN. Susceptibility of clinically sensitive and resistant Leishmania to pentavalent antimony in vitro. Am J Trop Med Hyg. 1982;31:459–65.
PubMed
CrossRef
CAS
Google Scholar
Navin TR, Arana BA, Arana FE, Berman JD, et al. Placebo-controlled clinical trial of sodium stibogluconate (Pentostam) versus ketoconazole for treating cutaneous leishmaniasis in Guatemala. J Infect Dis. 1992;165:528–34.
PubMed
CrossRef
CAS
Google Scholar
Burguera J, Burguera M, Petit de Pena Y, Lugo A, et al. Selective determination of antimony(III) and antimony(V) in serum and urine and of total antimony in skin biopsies of patients with cutaneous leishmaniasis treated with meglumine antimoniate. Trace Elem Med. 1993;10:66–70.
Google Scholar
Callahan HL, Portal AC, Devereaux R, Grogl M. An axenic amastigote system for drug screening. Antimicrob Agents Chemother. 1997;41:818–22.
PubMed
PubMed Central
CAS
Google Scholar
Ephros M, Bitnun A, Shaked P, Waldman E, Zilberstein D. Stage-specific activity of pentavalent antimony against Leishmania donovani axenic amastigotes. Antimicrob Agents Chemother. 1999;43:278–82.
PubMed
PubMed Central
CAS
Google Scholar
Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D. Novel intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem. 2001;276:3971–6.
PubMed
CrossRef
CAS
Google Scholar
Denton H, McGregor JC, Coombs GH. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J. 2004;381:405–12.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Zhou Y, Messier N, Ouellette M, Rosen BP, et al. Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem. 2004;279:37445–51.
PubMed
CrossRef
CAS
Google Scholar
Mukhopadhyay R, Bisacchi D, Zhou Y, Armirotti A, et al. Structural characterization of the As/Sb reductase LmACR2 from Leishmania major. J Mol Biol. 2009;386:1229–39.
PubMed
CrossRef
CAS
Google Scholar
Frézard F, Demicheli C, Ferreira CS, Costa MA. Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob Agents Chemother. 2001;45:913–6.
PubMed
PubMed Central
CrossRef
Google Scholar
Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, et al. Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem. 1998;273:24737–43.
PubMed
CrossRef
CAS
Google Scholar
Gourbal B, Sonuc N, Bhattacharjee H, Legare D, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem. 2004;279:31010–7.
PubMed
CrossRef
CAS
Google Scholar
Decuypere S, Rijal S, Yardley V, De Doncker S, et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother. 2005;49:4616–21.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol. 2005;57:1690–9.
PubMed
CrossRef
CAS
Google Scholar
Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004;279:39925–32.
PubMed
CrossRef
CAS
Google Scholar
Berman JD, Waddell D, Hanson BD. Biochemical mechanisms of the antileishmanial activity of sodium stibogluconate. Antimicrob Agents Chemother. 1985;27:916–20.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Sereno D, Holzmuller P, Mangot I, Cuny G. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother. 2001;45:2064–9.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Sudhandiran G, Shaha C. Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem. 2003;278:25120–32.
PubMed
CrossRef
CAS
Google Scholar
Grondin K, Haimeur A, Mukhopadhyay R, Rosen BP, et al. Co-amplification of the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J. 1997;16:3057–65.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Haimeur A, Brochu C, Genest P, Papadopoulou B, et al. Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol. 2000;108:131–5.
PubMed
CrossRef
CAS
Google Scholar
Callahan HL, Roberts WL, Rainey PM, Beverley SM. The PGPA gene of Leishmania major mediates antimony (SbIII) resistance by decreasing influx and not by increasing efflux. Mol Biochem Parasitol. 1994;68:145–9.
PubMed
CrossRef
CAS
Google Scholar
Légaré D, Richard D, Mukhopadhyay R, Stierhof YD, et al. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem. 2001;276:26301–7.
PubMed
CrossRef
Google Scholar
Mittal MK, Rai S, Ravinder GS, Sundar S, et al. Characterization of natural antimony resistance in Leishmania donovani isolates. Am J Trop Med Hyg. 2007;76:681–8.
PubMed
CAS
CrossRef
Google Scholar
Goyeneche-Patino DA, Valderrama L, Walker J, Saravia NG. Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis. Antimicrob Agents Chemother. 2008;52:4503–6.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Mukherjee A, Padmanabhan PK, Singh S, Roy G, et al. Role of ABC transporter MRPA, gamma-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother. 2007;59:204–11.
PubMed
CrossRef
CAS
Google Scholar
Mandal G, Sarkar A, Saha P, Singh N, et al. Functionality of drug efflux pumps in antimonial resistant Leishmania donovani field isolates. Indian J Biochem Biophys. 2009;46:86–92.
PubMed
CAS
Google Scholar
Monte-Neto R, Laffitte MC, Leprohon P, Reis P, et al. Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis. PLoS Negl Trop Dis. 2015;9:e0003476.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Hefnawy A, Berg M, Dujardin JC, De Muylder G. Exploiting knowledge on Leishmania drug resistance to support the quest for new drugs. Trends Parasitol. 2017;33:162–74.
PubMed
CrossRef
CAS
Google Scholar
Jardim A, Hanson S, Ullman B, McCubbin WD, et al. Cloning and structure-function analysis of the Leishmania donovani kinetoplastid membrane protein-11. Biochem J. 1995;305:315–20.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Fuertes MA, Berberich C, Lozano RM, Gimenez-Gallego G, et al. Folding stability of the kinetoplastid membrane protein-11 (KMP-11) from Leishmania infantum. Eur J Biochem. 1999;260:559–67.
PubMed
CrossRef
CAS
Google Scholar
Lee N, Bertholet S, Debrabant A, Muller J, et al. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ. 2002;9:53–64.
PubMed
CrossRef
CAS
Google Scholar
Cohen-Saidon C, Carmi I, Keren A, Razin E. Antiapoptotic function of Bcl-2 in mast cells is dependent on its association with heat shock protein 90. Blood. 2006;107:1413–20.
PubMed
CrossRef
CAS
Google Scholar
Das S, Shah P, Tandon R, Yadav NK, et al. Over-expression of cysteine leucine rich protein is related to SAG resistance in clinical isolates of Leishmania donovani. PLoS Negl Trop Dis. 2015;9:e0003992.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Das S, Shah P, Baharia RK, Tandon R, et al. Over-expression of 60s ribosomal L23a is associated with cellular proliferation in SAG resistant clinical isolates of Leishmania donovani. PLoS Negl Trop Dis. 2013;7:e2527.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Dridi L, Ahmed Ouameur A, Ouellette M. High affinity S-Adenosylmethionine plasma membrane transporter of Leishmania is a member of the folate biopterin transporter (FBT) family. J Biol Chem. 2010;285:19767–75.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Vickers TJ, Beverley SM. Folate metabolic pathways in Leishmania. Essays Biochem. 2011;51:63–80.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Wiśniewski JR, Zougman A, Mann M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res. 2009a;8:5674–8.
PubMed
CrossRef
CAS
Google Scholar
Wiśniewski JR, Duś-Szachniewicz K, Ostasiewicz P, Ziółkowski P, et al. Absolute proteome analysis of colorectal mucosa, adenoma, and cancer reveals drastic changes in fatty acid metabolism and plasma membrane transporters. J Proteome Res. 2015;14:4005–18.
PubMed
CrossRef
CAS
Google Scholar
Vildhede A, Wiśniewski JR, Norén A, Karlgren M, et al. Comparative proteomic analysis of human liver tissue and isolated hepatocytes with a focus on proteins determining drug exposure. J Proteome Res. 2015;14:3305–14.
PubMed
CrossRef
CAS
Google Scholar
Tandon R, Chandra S, Baharia RK, Das S, et al. Characterization of the proliferating cell nuclear antigen of Leishmania donovani clinical isolates and its association with antimony resistance. Antimicrob Agents Chemother. 2014;58:2997–3007.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Parodi-Talice A, Durán R, Arrambide N, Prieto V, et al. Proteome analysis of the causative agent of Chagas disease: Trypanosoma cruzi. Int J Parasitol. 2004;34:881–6.
PubMed
CrossRef
CAS
Google Scholar
Croft SL, Neal RA, Pendergast W, Chan JH. The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol. 1987;36:2633–6.
PubMed
CrossRef
CAS
Google Scholar
Kuhlencord A, Maniera T, Eibl H, Unger C. Hexadecylphosphocholine: oral treatment of visceral leishmaniasis in mice. Antimicrob Agents Chemother. 1992;36:1630–4.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Sundar S, Jha TK, Thakur CP, Engel J, et al. Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med. 2002;347:1739–46.
PubMed
CrossRef
CAS
Google Scholar
Soto J, Soto P. Miltefosine: oral treatment of leishmaniasis. Expert Rev Anti Infect Ther. 2006;4:177–85.
PubMed
CrossRef
CAS
Google Scholar
Sundar S, Mondal D, Rijal S, Bhattacharya S, et al. Implementation research to support the initiative on the elimination of kala azar from Bangladesh, India and Nepal–the challenges for diagnosis and treatment. Trop Med Int Health. 2008;13:2–5.
PubMed
CrossRef
Google Scholar
World Health Organization. Regional strategic framework for elimination of Kala-azar from the South-East Asia region (2005–2015). New Delhi: WHO Regional Office for South-East Asia; 2005.
Google Scholar
Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet. 2005;366:1561–77.
PubMed
CrossRef
CAS
Google Scholar
Calvopina M, Gomez EA, Sindermann H, Cooper PJ, et al. Relapse of new world diffuse cutaneous leishmaniasis caused by Leishmania (Leishmania) mexicana after miltefosine treatment. Am J Trop Med Hyg. 2006;75:1074–7.
PubMed
CrossRef
Google Scholar
Zerpa O, Ulrich M, Blanco B, Polegre M, et al. Diffuse cutaneous leishmaniasis responds to miltefosine but then relapses. Br J Dermatol. 2007;156:1328–35.
PubMed
CrossRef
CAS
Google Scholar
Pandey BD, Pandey K, Kaneko O, Yanagi T, et al. Relapse of visceral leishmaniasis after miltefosine treatment in a Nepalese patient. Am J Trop Med Hyg. 2009;80:580–2.
PubMed
CrossRef
Google Scholar
Andrade HM, Toledo VP, Pinheiro MB, Guimarães TM, et al. Evaluation of miltefosine for the treatment of dogs naturally infected with L. infantum (= L. chagasi) in Brazil. Vet Parasitol. 2011;181:83–90.
PubMed
CrossRef
CAS
Google Scholar
Proverbio D, Spada E, Bagnagatti De Giorgi G, Perego R. Failure of miltefosine treatment in two dogs with natural Leishmania infantum infection. Case Rep Vet Med. 2014;640151. https://doi.org/10.1155/2014/640151
Escobar P, Matu S, Marques C, Croft SL. Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop. 2002;81:151–7.
PubMed
CrossRef
CAS
Google Scholar
van Blitterswijk WJ, Verheij M. Anticancer alkylphospholipids: mechanisms of action, cellular sensitivity and resistance, and clinical prospects. Curr Pharm Des. 2008;14:2061–74.
PubMed
CrossRef
Google Scholar
Paris C, Loiseau PM, Bories C, Bréard J. Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 2004;48:852–9.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Croft SL, Seifert K, Duchêne M. Antiprotozoal activities of phospholipid analogues. Mol Biochem Parasitol. 2003;126:165–72.
PubMed
CrossRef
CAS
Google Scholar
Rakotomanga M, Blanc S, Gaudin K, Chaminade P, et al. Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 2007;51:1425–30.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Pérez-Victoria FJ, Sánchez-Cañete MP, Castanys S, Gamarro F. Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J Biol Chem. 2006a;281:23766–75.
PubMed
CrossRef
CAS
Google Scholar
Sánchez-Cañete MP, Carvalho L, Pérez-Victoria FJ, Gamarro F, et al. Low plasma membrane expression of the miltefosine transport complex renders Leishmania braziliensis refractory to the drug. Antimicrob Agents Chemother. 2009;53:1305–13.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Pérez-Victoria FJ, Sánchez-Cañete MP, Seifert K, Croft SL, et al. Mechanisms of experimental resistance of Leishmania to miltefosine: Implications for clinical use. Drug Resist Updat. 2006b;9:26–39.
PubMed
CrossRef
CAS
Google Scholar
Montero-Lomelí M, Morais BL, Figueiredo DL, Neto DC, et al. The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae. J Biol Chem. 2002;277:21542–8.
PubMed
CrossRef
CAS
Google Scholar
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009b;6:359–62.
PubMed
CrossRef
CAS
Google Scholar
Priotto G, Kasparian S, Mutombo W, Ngouama D, et al. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet. 2009;374:56–64.
PubMed
CrossRef
CAS
Google Scholar
Gygi SP, Corthals GL, Zhang Y, Rochon Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA. 2000;97:9390–5.
PubMed
CrossRef
CAS
PubMed Central
Google Scholar
Junqueira M, Spirin V, Santana Balbuena T, Waridel P, et al. Separating the wheat from the chaff: unbiased filtering of background tandem mass spectra improves protein identification. J Proteome Res. 2008;7:3382–95.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Lye LF, Owens K, Shi H, Murta SM, et al. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010;6:e1001161.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Carter KC, Hutchison S, Henriquez FL, Légaré D, et al. Resistance of Leishmania donovani to sodium stibogluconate is related to the expression of host and parasite gamma-glutamylcysteine synthetase. Antimicrob Agents Chemother. 2006;50:88–95.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Araujo RP, Liotta LA, Petricoin EF. Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nat Rev Drug Discov. 2007;6:871–80.
PubMed
CrossRef
CAS
Google Scholar