Skip to main content

Line Segment Disk Cover

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10743))

Included in the following conference series:

Abstract

In this paper, we consider the following variations of Line Segment Disk Cover (LSDC) problem.

  • \(\text {LSDC-H:}\) In this version of LSDC problem, we are given a set \(\mathcal{S}=\{s_1, s_2, \ldots , s_n\}\) of n horizontal line segments of arbitrary length and an integer \(k({\ge }1)\). Our aim is to cover all segments in \(\mathcal{S}\) with k disks of minimum radius centered at arbitrary points in the plane.

  • \(\text {LSDC-A:}\) In this version of LSDC problem, we are given a set \(\mathcal{S}=\{s_1, s_2, \ldots , s_n\}\) of n line segments of arbitrary length with arbitrary orientation and an integer \(k({\ge }1)\). Our aim is to cover all segments in \(\mathcal{S}\) with k disks of minimum radius centered at arbitrary points in the plane.

  • \(\text {LSDC-D:}\) In the discrete version of LSDC problem, we are given a set \(\mathcal{S}=\{s_1, s_2, \ldots , s_n\}\) of n line segments of arbitrary length with arbitrary orientation and a set \(\mathcal{D}=\{d_1, d_2, \ldots , d_m\}\) of m disks of unit radius. Our aim is to cover all segments in \(\mathcal{S}\) with minimum number of disks in \(\mathcal{D}\) i.e. \(\mathcal{S}\subset \bigcup \limits _{_{d\in D'}}d\), where \(D'\subseteq \mathcal{D}\) is of minimum cardinality.

For LSDC-H and LSDC-A problems, we propose \((1+\epsilon )\)-factor approximation algorithms, which run in \(O({(\lceil \frac{\pi }{\delta ^2}\rceil )}^{k}n(|{\log r_{opt}}|+\log \lceil \frac{1}{\rho }\rceil ))\) time and \(O({(\lceil \frac{\pi }{\delta ^2}\rceil )}^{k}n\log n(|{\log r_{opt}}|+\log \lceil \frac{1}{\rho }\rceil ))\) time respectively, where \(r_{opt}\) is the minimum radius of k disks which cover all segments in \(\mathcal{S}\), and \(\delta >0\), \(\rho >0\) and \(\epsilon >0\) are fixed constants such that \(\epsilon \ge (\delta +\delta \rho +\rho )\). For LSDC-D problem, we propose a \((1+\epsilon )\)-factor approximation algorithm (PTAS), which runs in \(O(m^{2(\frac{8\sqrt{2}}{\epsilon })^2+3}+m^2n)\) time, and a \((9+\epsilon )\)-factor approximation algorithm, which runs in \(O(m^{(5+\frac{18}{\epsilon })}\log m+m^2n)\) time, where a constant \(\epsilon >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM-2006. LNCS, vol. 4110, pp. 3–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11830924_3

    Chapter  Google Scholar 

  2. Agnetis, A., Grande, E., Mirchandani, P.B., Pacifici, A.: Covering a line segment with variable radius discs. Comput. Oper. Res. 36(5), 1423–1436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acharyya, A., Nandy, S.C., Pandit, S., Roy, S.: Covering segments with unit squares. In: Workshop on Algorithms and Data Structures, pp. 1–12 (2017)

    Google Scholar 

  4. Basappa, M., Acharyya, R., Das, G.K.: Unit disk cover problem in 2D. J. Discrete Algorithms 33, 193–201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brönnimann, H., Goodrich, M.: Almost optimal set covers in finite VC-dimension. Disc. Comput. Geom. 14, 463–479 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Claude, F., Das, G.K., Dorrigiv, R., Durocher, S., Fraser, R., López-Ortiz, A., Nickerson, B.G., Salinger, A.: An improved line-separable algorithm for discrete unit disk cover. Discrete Math. Algorithms Appl. 2(1), 77–87 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carmi, P., Katz, M.J., Lev-Tov, N.: Covering points by unit disks of fixed location. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 644–655. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77120-3_56

    Chapter  Google Scholar 

  8. Călinescu, G., Măndoiu, I.I., Wan, P.J., Zelikovsky, A.Z.: Selecting forwarding neighbors in wireless ad hoc networks. Mob. Netw. Appl. 9(2), 101–111 (2004)

    Article  Google Scholar 

  9. Dash, D., Bishnu, A., Gupta, A., Nandy, S.C.: Approximation algorithms for deployment of sensors for line segment coverage in wireless sensor networks. Wirel. Netw. 19(5), 857–870 (2013)

    Article  Google Scholar 

  10. Das, G.K., Fraser, R., López-Ortiz, A., Nickerson, B.G.: On the discrete unit disk cover problem. Int. J. Comput. Geom. Appl. 22(5), 407–420 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dash, D., Gupta, A., Bishnu, A., Nandy, S.C.: Line coverage measures in wireless sensor networks. J. Parallel Distrib. Comput. 74(7), 2596–2614 (2014)

    Article  Google Scholar 

  12. Fraser, R., López-Ortiz, A.: The within-strip discrete unit disk cover problem. In: Proceedings of Canadian Conference on Computational Geometry, pp. 61–66 (2012)

    Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  14. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Narayanappa, S., Vojtechovskỳ P.: An improved approximation factor for the unit disk covering problem. In: Proceedings of Canadian Conference on Computational Geometry, pp. 15–18 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjanna Basappa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basappa, M. (2018). Line Segment Disk Cover. In: Panda, B., Goswami, P. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2018. Lecture Notes in Computer Science(), vol 10743. Springer, Cham. https://doi.org/10.1007/978-3-319-74180-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74180-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74179-6

  • Online ISBN: 978-3-319-74180-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics