A Buck-Boost Multilevel Inverter for PV Systems in Smart Cities

  • Anh-Vu HoEmail author
  • Tae-Won Chun
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 221)


This paper proposes a new buck-boost multilevel inverter topology, which is named as a hybrid quasi-Z-source network multilevel inverter, for photovoltaic systems in smart cities. This topology employs an impedance source network and a high frequency three-level switching unit connected to the low frequency single phase inverter. In comparison with other quasi-Z-source network multilevel inverter topologies, the proposed topology uses a lower number of circuit components and more reliable operation. In addition, an effective modulation technique based on phase-shifted disposition scheme is introduced to control the shoot-through state for both boost and buck states of the output voltage. The operating principle of the proposed topology is analyzed in detail. Both simulation and experimental results are carried out to validate the performance of the proposed topology.


Multilevel inverters Quasi-Z-source inverter Boost control method Pulse width modulation (PWM) 


  1. 1.
    Atasoy, T., Akınç, H.E., Ö, E.: An analysis on smart grid applications and grid integration of renewable energy systems in smart cities. In: 2015 International Conference on Renewable Energy Research and Applications (ICRERA), pp. 547–550 (2015)Google Scholar
  2. 2.
    Brenna, M., Falvo, M.C., Foiadelli, F., Martirano, L., Massaro, F., Poli, D., Vaccaro, A.: Challenges in energy systems for the smart-cities of the future. In: 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), pp. 755–762 (2012)Google Scholar
  3. 3.
    Fang Zheng, P.: Z-source inverter. IEEE Trans. Ind. Appl. 39, 504–510 (2003)CrossRefGoogle Scholar
  4. 4.
    Anderson, J., Peng, F.Z.: A class of quasi-Z-source inverters. In: 2008 IEEE Industry Applications Society Annual Meeting, pp. 1–7 (2008)Google Scholar
  5. 5.
    Guo, F., Fu, L., Lin, C.H., Li, C., Choi, W., Wang, J.: Development of an 85-kW bidirectional quasi-Z-source inverter With DC-Link feed-forward compensation for electric vehicle applications. IEEE Trans. Power Electron. 28, 5477–5488 (2013)CrossRefGoogle Scholar
  6. 6.
    Zhou, Y., Liu, L., Li, H.: A high-performance photovoltaic Module-Integrated Converter (MIC) based on cascaded Quasi-Z-Source Inverters (qZSI) using eGaN FETs. IEEE Trans. Power Electron. 28, 2727–2738 (2013)CrossRefGoogle Scholar
  7. 7.
    Jih-Sheng, L., Fang Zheng, P.: Multilevel Converters-A new breed of power converters. IEEE Trans. Ind. Appl. 32, 509–517 (1996)CrossRefGoogle Scholar
  8. 8.
    Abu-Rub, H., Holtz, J., Rodriguez, J., Baoming, G.: Medium-voltage multilevel converters-state of the art, challenges, and requirements in industrial applications. IEEE Trans. Industr. Electron. 57, 2581–2596 (2010)CrossRefGoogle Scholar
  9. 9.
    Loh, P.C., Blaabjerg, F., Wong, C.P.: Comparative evaluation of pulsewidth modulation strategies for Z-source neutral-point-clamped inverter. IEEE Trans. Power Electron. 22, 1005–1013 (2007)CrossRefGoogle Scholar
  10. 10.
    Gao, F., Loh, P.C., Blaabjerg, F., Teodorescu, R., Vilathgamuwa, D.M.: Five-level Z-source diode-clamped inverter. IET Power Electron. 3, 500–510 (2010)CrossRefGoogle Scholar
  11. 11.
    Banaei, M.R., Dehghanzadeh, A.R., Salary, E., Khounjahan, H., Alizadeh, R.: Z-source-based multilevel inverter with reduction of switches. IET Power Electron. 5, 385–392 (2012)CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Ge, B., Abu-Rub, H., Peng, F.Z.: An effective control method for three-phase quasi-Z-source cascaded multilevel inverter based grid-tie photovoltaic power system. IEEE Trans. Industr. Electron. 61, 6794–6802 (2014)CrossRefGoogle Scholar
  13. 13.
    Husev, O., Stepenko, S., Roncero-Clemente, C., Romero-Cadaval, E., Vinnikov, D.: Single phase three-level quasi-Z-source inverter with a new boost modulation technique. In: IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, pp. 5852–5857 (2012)Google Scholar
  14. 14.
    Husev, O., Roncero-Clemente, C., Romero-Cadaval, E., Vinnikov, D., Stepenko, S.: Single phase three-level neutral-point-clamped quasi-Z-source inverter. IET Power Electron. 8, 1–10 (2015)CrossRefGoogle Scholar
  15. 15.
    Ruiz-Caballero, D.A., Ramos-Astudillo, R.M., Mussa, S.A., Heldwein, M.L.: Symmetrical hybrid multilevel DC-AC converters with reduced number of insulated DC supplies. IEEE Trans. Industr. Electron. 57, 2307–2314 (2010)CrossRefGoogle Scholar
  16. 16.
    Ho, A.V., Hyun, J.S., Chun, T.W.: Analysis and control of single-phase Z-source multilevel inverter. In: 2015 18th International Conference on Electrical Machines and Systems (ICEMS), pp. 2134–2139 (2015)Google Scholar
  17. 17.
    Loh, P.C., Gao, F., Blaabjerg, F., Feng, S.Y.C., Soon, K.N.J.: Pulsewidth-modulated Z-source neutral-point-clamped inverter. IEEE Trans. Ind. Appl. 43, 1295–1308 (2007)CrossRefGoogle Scholar
  18. 18.
    Effah, F.B., Wheeler, P., Clare, J., Watson, A.: Space-vector-modulated three-level inverters with a single Z-source network. IEEE Trans. Power Electron. 28, 2806–2815 (2013)CrossRefGoogle Scholar
  19. 19.
    Banaei, M.R., Oskouei, A.B., Dehghanzadeh, A.: Extended switching algorithms based space vector control for five-level quasi-Z-source inverter with coupled inductors. IET Power Electron. 7, 1509–1518 (2014)CrossRefGoogle Scholar
  20. 20.
    Holmes, D.G., Thomas, A.L.: CarrierBased PWM of multilevel inverters. pulse width modulation for power converters: principles and practice, pp. 453–530. Wiley-IEEE Press (2003)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  1. 1.School of EngineeringEastern International UniversityThu Dau MotVietnam
  2. 2.School of Electrical and Electronic EngineeringUniversity of UlsanUlsanKorea

Personalised recommendations