Advertisement

A Short Survey on Fault Diagnosis of Rotating Machinery Using Entropy Techniques

  • Zhiqiang HuoEmail author
  • Yu Zhang
  • Lei Shu
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 221)

Abstract

Fault diagnosis is significant for identifying latent abnormalities, and implementing fault-tolerant operations for minimizing performance degradation caused by failures in industrial systems, such as rotating machinery. The emergence of entropy theory contributes to precisely measure irregularity and complexity in a time series, which can be used for discriminating prominent fault information in rotating machinery. In this short paper, the utilization of entropy techniques for fault diagnosis of rotating machinery is summarized. Finally, open research trends and conclusions are discussed and presented respectively.

Keywords

Fault diagnosis Rotating machinery Entropy 

Notes

Acknowledgement

This work is partially supported by International and Hong Kong, Macao & Taiwan collaborative innovation platform and major international cooperation projects of colleges in Guangdong Province (No. 2015KGJHZ026), The Natural Science Foundation of Guangdong Province (No. 2016A030307029), and Maoming Engineering Research Center on Industrial Internet of Things (No. 517018).

References

  1. 1.
    CusidÓCusido, J., Romeral, L., Ortega, J.A., Rosero, J.A., Espinosa, A.G.: Fault detection in induction machines using power spectral density in wavelet decomposition. IEEE Trans. Industr. Electron. 55(2), 633–643 (2008)CrossRefGoogle Scholar
  2. 2.
    Xiong, G., Zhang, L., Liu, H., Zou, H., Guo, W.: A comparative study on ApEn, SampEn and their fuzzy counterparts in a multiscale framework for feature extraction. J. Zhejiang Univ. SCIENCE A 11(4), 270–279 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)CrossRefGoogle Scholar
  4. 4.
    Costa, M., Goldberger, A.L., Peng, C.-K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71(2), 021906 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zheng, J., Cheng, J., Yang, Y., Luo, S.: A rolling bearing fault diagnosis method based on multi-scale fuzzy entropy and variable predictive model-based class discrimination. Mech. Mach. Theor. 78, 187–200 (2014)CrossRefGoogle Scholar
  6. 6.
    Aziz, W., Arif, M.: Multiscale permutation entropy of physiological time series. In: IEEE 2005 9th International Multitopic Conference, INMIC 2005, pp. 1–6. IEEE (2005)Google Scholar
  7. 7.
    Bin, G., Gao, J., Li, X., Dhillon, B.: Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network. Mech. Syst. Sign. Process. 27, 696–711 (2012)CrossRefGoogle Scholar
  8. 8.
    Tabrizi, A., Garibaldi, L., Fasana, A., Marchesiello, S.: Early damage detection of roller bearings using wavelet packet decomposition, ensemble empirical mode decomposition and support vector machine. Meccanica 50(3), 865–874 (2015)CrossRefGoogle Scholar
  9. 9.
    Kankar, P.K., Sharma, S.C., Harsha, S.P.: Fault diagnosis of ball bearings using continuous wavelet transform. Appl. Soft Comput. 11(2), 2300–2312 (2011)CrossRefGoogle Scholar
  10. 10.
    Gu, D., Kim, J., Kelimu, T., Huh, S.-C., Choi, B.-K.: Evaluation of the use of envelope analysis and DWT on AE signals generated from degrading shafts. Mater. Sci. Eng., B 177(19), 1683–1690 (2012)CrossRefGoogle Scholar
  11. 11.
    Camarena-Martinez, D., Valtierra-Rodriguez, M., Amezquita-Sanchez, J.P., Granados-Lieberman, D., Romero-Troncoso, R.J., Garcia-Perez, A.: Shannon entropy and k-means method for automatic diagnosis of broken rotor bars in induction motors using vibration signals. Shock Vibr. 2016, 10 (2016)Google Scholar
  12. 12.
    He, Y., Zhang, X.: Approximate entropy analysis of the acoustic emission from defects in rolling element bearings. J. Vibr. Acoust. 134(6), 061012 (2012)CrossRefGoogle Scholar
  13. 13.
    Sampaio, D.L., Nicoletti, R.: Detection of cracks in shafts with the approximated entropy algorithm. Mech. Syst. Sign. Process. 72, 286–302 (2016)CrossRefGoogle Scholar
  14. 14.
    Lin, J., Dou, C.: A novel method for condition monitoring of rotating machinery based on statistical linguistic analysis and weighted similarity measures. J. Sound Vibr. 390, 272–288 (2017)CrossRefGoogle Scholar
  15. 15.
    Liang, J., Yang, Z.: A novel wavelet transform – empirical mode decomposition based sample entropy and SVD approach for acoustic signal fault diagnosis. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol. 9142, pp. 232–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20469-7_26 CrossRefGoogle Scholar
  16. 16.
    Wu, T.-Y., Yu, C.-L., Liu, D.-C.: On multi-scale entropy analysis of order-tracking measurement for bearing fault diagnosis under variable speed. Entropy 18(8), 292 (2016)CrossRefGoogle Scholar
  17. 17.
    Pan, S., Han, T., Tan, A.C., Lin, T.R.: Fault diagnosis system of induction motors based on multiscale entropy and support vector machine with mutual information algorithm. Shock Vibr. 2016, 12 (2016)Google Scholar
  18. 18.
    Verma, A.K., Sarangi, S., Kolekar, M.: Misalignment faults detection in an induction motor based on multi-scale entropy and artificial neural network. Electr. Power Compon. Syst. 44(8), 916–927 (2016)CrossRefGoogle Scholar
  19. 19.
    Aouabdi, S., Taibi, M., Bouras, S., Boutasseta, N.: Using multi-scale entropy and principal component analysis to monitor gears degradation via the motor current signature analysis. Mech. Syst. Signal Process. 90, 298–316 (2017)CrossRefGoogle Scholar
  20. 20.
    Chen, X., Cheng, G., Li, H., Zhang, M.: Diagnosing planetary gear faults using the fuzzy entropy of LMD and ANFIS. J. Mech. Sci. Technol. 30(6), 2453–2462 (2016)CrossRefGoogle Scholar
  21. 21.
    Mehta, P., Gaikwad, J.A., Kulkarni, J.V.: Application of multi-scale fuzzy entropy for roller bearing fault detection and fault classification based on VPMCD. In: IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 256–261. IEEE (2016)Google Scholar
  22. 22.
    Zhao, H., Sun, M., Deng, W., Yang, X.: A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing. Entropy 19(1), 14 (2016)CrossRefGoogle Scholar
  23. 23.
    Zheng, J., Pan, H., Cheng, J.: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines. Mech. Syst. Signal Process. 85, 746–759 (2017)CrossRefGoogle Scholar
  24. 24.
    Wu, S.-D., Wu, P.-H., Wu, C.-W., Ding, J.-J., Wang, C.-C.: Bearing fault diagnosis based on multiscale permutation entropy and support vector machine. Entropy 14(8), 1343–1356 (2012)CrossRefzbMATHGoogle Scholar
  25. 25.
    Vakharia, V., Gupta, V., Kankar, P.: A multiscale permutation entropy based approach to select wavelet for fault diagnosis of ball bearings. J. Vibr. Control 21(16), 3123–3131 (2015)CrossRefGoogle Scholar
  26. 26.
    Zhang, X., Liang, Y., Zhou, J., et al.: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM. Measurement 69, 164–179 (2015)CrossRefGoogle Scholar
  27. 27.
    Yi, C., Lv, Y., Ge, M., Xiao, H., Yu, X.: Tensor singular spectrum decomposition algorithm based on permutation entropy for rolling bearing fault diagnosis. Entropy 19(4), 139 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  1. 1.School of EngineeringUniversity of LincolnLincolnUK
  2. 2.Guangdong Provincial Key Laboratory on Petrochemical Equipment Fault DiagnosisGuangdong University of Petrochemical TechnologyMaomingChina

Personalised recommendations