Advertisement

Outage Probability for Cognitive Heterogeneous Networks with Unreliable Backhaul Connections

  • Huy T. Nguyen
  • Dac-Binh Ha
  • Sang Quang Nguyen
  • Won-Joo HwangEmail author
Conference paper
  • 562 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 221)

Abstract

To enhance the spectrum scarcity of cooperative heterogeneous networks (HetNets) with unreliable backhaul connections, we examine the impact of cognitive spectrum sharing over multiple small-cell transmitters in Nakagami-m fading channels. In this system, the secondary transmitters are connected to macro-cell via wireless backhaul links and communicate with the secondary receiver by sharing the same spectrum with the primary user. Integrating cognitive radio (CR), we address the combined power constraints: (1) the peak interference power and (2) the maximal transmit power. In addition, to exclude the signaling overhead for exchanging channel-state-information (CSI) at the transmitters, the selection combining (SC) protocol is assumed to employ at the receivers. The closed-form statistics of the end-to-end signal-to-noise (SNR) ratio are derived to attain the exact formulas of outage probability and its asymptotic performance to reveal further insights into the effective unreliable backhaul links.

Keywords

Cognitive Radio Cooperative system Wireless backhaul Outage probability Nakagami-m fading 

Notes

Acknowledgement

This work was supported by the Ministry of Science, ICT and Future Planning, South Korea, through the Grand Information Technology Research Center Program under Grant IITP-2017-2016-0-00318

References

  1. 1.
    Andrews, J.G.: Seven ways that HetNets are a cellular paradigm shift. IEEE Commun. Mag. 51(3), 136–144 (2013)CrossRefGoogle Scholar
  2. 2.
    Coldrey, M., Koorapaty, H., Berg, J.-E., Ghebretensae, Z., Hansryd, J., Derneryd, A., Falahati, S.: Small-cell wireless backhauling: a non-line-of-sight approach for point-to-point microwave links. In: Proceedings of IEEE Vehicular Technology Conference, Quebec City, Canada, pp. 1–5 (2012)Google Scholar
  3. 3.
    Mayer, Z., Li, J., Papadogiannis, A., Svensson, T.: On the impact of backhaul channel reliability on cooperative wireless networks. In: Proceedings of IEEE International Conference on Communications, Budapest, Hungary, pp. 5284–5289 (2013)Google Scholar
  4. 4.
    Kim, K.J., Orlik, P.V., Khan, T.A.: Performance analysis of finite-sized co-operative systems with unreliable backhauls. IEEE Trans. Wirel. Commun. 15(7), 5001–5015 (2016)Google Scholar
  5. 5.
    Kim, K.J., Khan, T., Orlik, P.: Performance analysis of cooperative systems with unreliable backhauls and selection combining. IEEE Trans. Veh. Technol. 66, 2448–2461 (2016)CrossRefGoogle Scholar
  6. 6.
    Peng, M., Liu, Y., Wei, D., Wang, W., Chen, H.-H.: Hierarchical cooperative relay based heterogeneous networks. IEEE Wirel. Commun. 18(3), 48–56 (2011)CrossRefGoogle Scholar
  7. 7.
    Al-Qahtani, F.S., Zhong, C., Alnuweiri, H.M.: Opportunistic relay selection for secrecy enhancement in cooperative networks. IEEE Trans. Commun. 63(5), 1756–1770 (2015)CrossRefGoogle Scholar
  8. 8.
    Kim, K.J., Duong, T.Q., Tran, X.-N.: Performance analysis of cognitive spectrum-sharing single-carrier systems with relay selection. IEEE Trans. Signal Process. 60(12), 6435–6449 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  10. 10.
    Zhang, R., Liang, Y.-C.: Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE J. Sel. Top. Signal Process. 2(1), 88–102 (2008)CrossRefGoogle Scholar
  11. 11.
    Niyato, D., Hossain, E.: Competitive pricing for spectrum sharing in cognitive radio networks: dynamic game, inefficiency of nash equilibrium, and collusion. IEEE J. Sel. Areas Commun. 26(1), 192–202 (2008)CrossRefGoogle Scholar
  12. 12.
    Duong, T.Q., da Costa, D.B., Elkashlan, M., Bao, V.N.Q.: Cognitive amplify-and-forward relay networks over Nakagami-m fading. IEEE Trans. Veh. Technol. 61(5), 2368–2374 (2012)CrossRefGoogle Scholar
  13. 13.
    Deng, Y., Wang, L., Elkashlan, M., Kim, K.J., Duong, T.Q.: Generalized selection combining for cognitive relay networks over Nakagami-m fading. IEEE Trans. Signal Process. 63(8), 1993–2006 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Duong, T.Q., Bao, V.N.Q., Alexandropoulos, G.C., Zepernick, H.-J.: Cooperative spectrum sharing networks with AF relay and selection diversity. IET Electron. Lett. 47(20), 1149–1151 (2011)CrossRefGoogle Scholar
  15. 15.
    Duong, T.Q., Bao, V.N.Q., Zepernick, H.-J.: Exact outage probability of cognitive AF relaying with underlay spectrum sharing. IET Electron. Lett. 47(17), 1001–1002 (2011)CrossRefGoogle Scholar
  16. 16.
    Guimaraes, F.R.V., da Costa, D.B., Tsiftsis, T.A., Cavalcante, C.C., Karagiannidis, G.K.: Multiuser and multirelay cognitive radio networks under spectrum-sharing constraints. IEEE Trans. Veh. Technol. 63(1), 433–439 (2014)CrossRefGoogle Scholar
  17. 17.
    Lodhi, A., Said, F., Dohler, M., Aghvami, A.H.: Closed-form symbol error probabilities of STBC and CDD MC-CDMA with frequency correlated subcarriers over Nakagami-m fading channels. IEEE Trans. Veh. Technol. 57(2), 962–973 (2008)CrossRefGoogle Scholar
  18. 18.
    Duong, T.Q., Yeoh, P.L., Bao, V.N.Q., Elkashlan, M., Yang, N.: Cognitive relay networks with multiple primary transceivers under spectrum-sharing. IEEE Signal Process. Lett. 19(11), 741–744 (2012)CrossRefGoogle Scholar
  19. 19.
    Khan, T.A., Orlik, P., Kim, K.J., Heath, R.W.: Performance analysis of cooperative wireless networks with unreliable backhaul links. IEEE Commun. Lett. 19(8), 1386–1389 (2015)CrossRefGoogle Scholar
  20. 20.
    Tsiftsis, T.A., Karagiannidis, G.K., Sagias, N.C., Kotsopoulos, S.A.: Performance of MRC diversity receivers over correlated Nakagami-m fading channels. In: Proceedings of Communication Systems, Networks and Digital Signal Processing, Patras, Greece, pp. 84–88 (2006)Google Scholar
  21. 21.
    Cavers, J.K.: Single-user and multiuser adaptive maximal ratio transmission for Rayleigh channels. IEEE Trans. Veh. Technol. 49(6), 2043–2050 (2000)CrossRefGoogle Scholar
  22. 22.
    Duong, T.Q., da Costa, D.B., Tsiftsis, T.A., Zhong, C., Nallanathan, A.: Outage and diversity of cognitive relaying systems under spectrum sharing environments in Nakagami-m fading. IEEE Commun. Lett. 16(12), 2075–2078 (2012)CrossRefGoogle Scholar
  23. 23.
    Duong, T.Q., Alexandropoulos, G.C., Zepernick, H.-J., Tsiftsis, T.A.: Orthogonal space-time block codes with CSI-assisted amplify-and forward relaying in correlated Nakagami-m fading channels. IEEE Trans. Veh. Technol. 60(3), 882–889 (2011)CrossRefGoogle Scholar
  24. 24.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (2007)zbMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Huy T. Nguyen
    • 1
  • Dac-Binh Ha
    • 2
  • Sang Quang Nguyen
    • 2
  • Won-Joo Hwang
    • 1
    Email author
  1. 1.Department of Information and Communication SystemInje UniversityGimhaeKorea
  2. 2.Duy Tan UniversityDa NangVietnam

Personalised recommendations