Skip to main content

Sucking the Oil: Adsorption Ability of Three-Dimensional Epicuticular Wax Coverages in Plants As a Possible Mechanism Reducing Insect Wet Adhesion

  • Chapter
  • First Online:
  • 1026 Accesses

Part of the book series: Biologically-Inspired Systems ((BISY,volume 10))

Abstract

Primary aerial surfaces of terrestrial plants are very often covered with three-dimensional epicuticular waxes. Such wax coverages play an important role in insect-plant interactions. Wax blooms have been experimentally shown in numerous previous studies to be impeding locomotion and reducing attachment of insects. Among the mechanisms responsible for these effects, a possible adsorption of insect adhesive fluid by highly porous wax coverage has been proposed (adsorption hypothesis). Recently, a great decrease in insect attachment force on artificial adsorbing materials was revealed in a few studies. However, adsorption ability of plant wax blooms was still not tested. Using a cryo scanning electron microscopy approach and high-speed video recordings of fluid drops behavior, followed by numerical analysis of experimental data, we show here that the three-dimensional epicuticular wax coverage in the waxy zone of Nepenthes alata pitcher adsorbs oil: we detected changes in the base, height, and volume of the oil drops. The wax layer thickness, differing in samples with untreated two-layered wax coverage and treated one-layered wax, did not significantly affect the drop behavior. These results provide strong evidence that three-dimensional plant wax coverages due to their adsorption capability are in general anti-adhesive for insects, which rely on wet adhesion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Attygalle, A. B., Aneshansley, D. J., Meinwald, J., & Eisner, T. (2000). Defense by foot adhesion in a chrysomelid beetle (Hemisphaerota cyanea): Characterization of the adhesive oil. Zoology, 103, 1–6.

    Google Scholar 

  • Bargel, H., Koch, K., Cerman, Z., & Neinhuis, C. (2006). Structure–function relationships of the plant cuticle and cuticular waxes—A smart material? Functional Plant Biology, 33, 893–910.

    Article  CAS  Google Scholar 

  • Barthlott, W., Neinhuis, C., Cutler, D., Ditsch, F., Meusel, I., Theisen, I., & Wilhelmi, H. (1998). Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society, 126, 237–260.

    Article  Google Scholar 

  • Benz, M. J., Gorb, E. V., & Gorb, S. N. (2012). Diversity of the slippery zone microstructure in pitchers of nine carnivorous Nepenthes taxa. Arthropod-Plant Interactions, 6, 147–158.

    Article  Google Scholar 

  • Betz, O., Verheyden, A. N., Maurer, A., Schmitt, C., Braun, J., Kowalik, T., Grunwald, I., Hartwig, A., & Neuenfeldt, M. (2016). Peptide mass analyses of the tarsal adhesive secretion in the desert locust Schistocerca gregaria and the Madagascar hissing cockroach Gromphadorhina portentosa. Insect Molecular Biology, 25, 541–549.

    Article  CAS  PubMed  Google Scholar 

  • Bullock, J. M., & Federle, W. (2009). Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: Effective elastic modulus and attachment performance. The Journal of Experimental Biology, 212, 1876–1888.

    Article  PubMed  Google Scholar 

  • Busscher, H. J., Vanpert, A. W. J., Deboer, P., & Arends, J. (1984). The effect of the surface roughening of polymers on measured contact angle of liquids. Colloids and Surfaces, 9, 319–331.

    Article  CAS  Google Scholar 

  • Dirks, J.-H., & Federle, W. (2011). Fluid-based adhesion in insects—Principles and challenges. Soft Matter, 7, 11047–11053.

    Article  CAS  Google Scholar 

  • Dirks, J.-H., Clemente, C. J., & Federle, W. (2010). Insect tricks: Two-phasic foot pad secretion prevents slipping. Journal of the Royal Society Interface, 7, 587–593.

    Article  Google Scholar 

  • Dixon, A. F. G., Croghan, P. C., & Gowing, R. P. (1990). The mechanism by which aphids adhere to smooth surfaces. The Journal of Experimental Biology, 152, 243–253.

    Google Scholar 

  • Drechsler, P., & Federle, W. (2006). Biomechanics of smooth adhesive pads in insects: Influence of tarsal secretion on attachment performance. Journal of Comparative Physiology A, 192, 1213–1222.

    Article  Google Scholar 

  • Edwards, J. S., & Tarkanian, M. (1970). The adhesive pads of Heteroptera: A re-examination. Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 45, 1–5.

    Article  Google Scholar 

  • Eigenbrode, S. D. (1996). Plant surface waxes and insect behavior. In G. Kerstiens (Ed.), Plant cuticles—An integrated functional approach (pp. 201–222). Oxford: BIOS Scientific Publishers.

    Google Scholar 

  • Eigenbrode, S. D., Castognola, T., Roux, M. B., & Steljes, L. (1999). Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a wax bloom. Entomologia Experimentalis et Applicata, 81, 335–343.

    Article  Google Scholar 

  • Eisner, T., & Aneshansley, D. J. (2000). Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proceedings of the National Academy of Sciences of the United States of America, 97, 6568–6573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaume, L., Gorb, S., & Rowe, N. (2002). Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. The New Phytologist, 156, 479–489.

    Article  Google Scholar 

  • Gaume, L., Perret, P., Gorb, E., Gorb, S., Labat, J.-J., & Rowe, N. (2004). How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Structure & Development, 33, 103–111.

    Article  CAS  Google Scholar 

  • Geiselhardt, S. F., Geiselhardt, S., & Peschke, K. (2009). Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques. Chemoecology, 19, 185–193.

    Article  CAS  Google Scholar 

  • Gerhardt, H., Schmitt, C., Betz, O., Albert, K., & Lämmerhofer, M. (2015). Contact solid-phase microextraction with uncoated glass and polydimethylsiloxane-coated fibers versus solvent sampling for the determination of hydrocarbons in adhesion secretions of Madagascar hissing cockroaches Gromphadorrhina portentosa (Blattodea) by gas chromatography-mass spectrometry. Journal of Chromatography A, 1388, 24–35.

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt, H., Betz, O., Albert, K., & Lämmerhofer, M. (2016). Similarities, dissimilarities and classification of molecular (hydrocarbon) profiles of insect secretions in dependence of species, sex, and sampled body region. Journal of Chemical Ecology, 42, 725–738.

    Article  CAS  PubMed  Google Scholar 

  • Gorb, S. N. (2001). Attachment devices of insect cuticle. Dordrecht/Boston/London: Kluwer Academic Publishers.

    Google Scholar 

  • Gorb, S. N. (2007). Visualisation of native surfaces by two-step molding. Microscopy Today, 15, 44–46.

    Article  Google Scholar 

  • Gorb, E. V., & Gorb, S. N. (2002). Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomologia Experimentalis et Applicata, 105, 13–28.

    Article  Google Scholar 

  • Gorb, E. V., & Gorb, S. N. (2006a). Do plant waxes make insect attachment structures dirty? Experimental evidence for the contamination hypothesis. In A. Herrel, T. Speck, & N. P. Rowe (Eds.), Ecology and biomechanics—A mechanical approach to the ecology of animals and plants (pp. 147–162). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Gorb, E. V., & Gorb, S. N. (2006b). Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae). Plant Biology, 8, 841–848.

    Article  CAS  PubMed  Google Scholar 

  • Gorb, E., & Gorb, S. (2009). Functional surfaces in the pitcher of the carnivorous plant Nepenthes alata: A cryo-SEM approach. In S. N. Gorb (Ed.), Functional surfaces in biology: Adhesion related effects (pp. 205–238). Dordrecht/Heidelberg/London/New York: Springer.

    Chapter  Google Scholar 

  • Gorb, E. V., & Gorb, S. N. (2013). Anti-adhesive surfaces in plants and their biomimetic potential. In P. Fratzl, J. W. C. Dunlop, & R. Weinkamer (Eds.), Materials design inspired by nature: Function through inner architecture (pp. 282–309). Cambridge: RSC Publishing.

    Chapter  Google Scholar 

  • Gorb, E., Haas, K., Henrich, A., Enders, S., Barbakadze, N., & Gorb, S. (2005). Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachement. The Journal of Experimental Biology, 208, 4651–4662.

    Article  CAS  PubMed  Google Scholar 

  • Gorb, E., Voigt, D., Eigenbrode, S. D., & Gorb, S. (2008). Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaf surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage. Arthropod-Plant Interactions 2, 247–259.

    Google Scholar 

  • Gorb, E. V., Hosoda, N., Miksch, C., & Gorb, S. N. (2010). Slippery pores: Anti-adhesive effect of nanoporous substrates on the beetle attachment system. Journal of the Royal Society Interface, 7, 1571–1579.

    Article  CAS  PubMed Central  Google Scholar 

  • Gorb, E. V., Baum, M. J., & Gorb, S. N. (2013). Development and regeneration ability of the wax coverage in Nepenthes alata pitchers: A cryo-SEM approach. Scientific Reports, 3, 3078.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorb, E. V., Purtov, J., & Gorb, S. N. (2014a). Adhesion force measurements on the two wax layers of the waxy zone in Nepenthes alata pitchers. Scientific Reports, 4, 5154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorb, E. V., Böhm, S., Jacky, N., Maier, L.-P., Dening, K., Pechook, S., Pokroy, B., & Gorb, S. N. (2014b). Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths. Beilstein Journal of Nanotechnology, 5, 1031–1041.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii, S. (1987). Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculta (Coleoptera: Coccinellidae) on a vertically smooth surface. Applied Entomology and Zoology, 22, 222–228.

    Article  Google Scholar 

  • Jeffree, C. F. (1986). The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, function and evolution. In B. Juniper & R. Southwood (Eds.), Insects and the plant surface (pp. 23–64). London: Edward Arnold Publishers.

    Google Scholar 

  • Jeffree, C. E. (2006). The fine structure of the plant cuticle. In M. Riederer & C. Müller (Eds.), Biology of the plant cuticle (pp. 11–125). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Jeffree, C. E., Baker, E. A., & Holloway, P. J. (1975). Ultrastructure and recrystallisation of plant epicuticular waxes. The New Phytologist, 75, 539–449.

    Article  Google Scholar 

  • Jetter, R., & Riederer, M. (1994). Epicuticular crystals of nanocosan-10 ol: In vitro reconstitution and factors influencing crystal habits. Planta, 195, 257–270.

    Article  CAS  Google Scholar 

  • Jetter, R., & Riederer, M. (1995). In vitro reconstitution of epicuticular wax crystals: Formation of tubular aggregates by long chain secondary alkanediols. Botanica Acta: Journal of the German Botanical Society, 108, 111–120.

    Article  CAS  Google Scholar 

  • Jetter, R., Kunst, L., & Samuels, A. L. (2006). Composition of plant epicuticular waxes. In M. Riederer & C. Müller (Eds.), Biology of the plant cuticle (pp. 145–181). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Juniper, B. E., & Burras, J. K. (1962). How pitcher plants trap insects. New Scientist (1971), 269, 75–77.

    Google Scholar 

  • Koch, K., & Ensikat, H. J. (2008). The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron, 39, 759–772.

    Article  CAS  PubMed  Google Scholar 

  • Koch, K., Bhushan, B., & Barthlott, W. (2010). Multifunctional plant surfaces and smart materials. In B. Bhushan (Ed.), Handbook of nanotechnology (pp. 1399–1436). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Kosaki, A., & Yamaoka, R. (1996). Chemical composition of footprints and cuticula lipids of three species of lady beetles. Japanese Journal of Applied Entomology and Zoology, 40, 47–53.

    Article  CAS  Google Scholar 

  • McPherson, S. (2009). Pitcher plants of the old world. Poole: Redfern Natural History Productions.

    Google Scholar 

  • Meusel, I., Neinhuis, C., Markstadter, C., & Barthlott, W. (2000). Chemical composition and recrystallization of epicuticular waxes: Coiled rodlets and tubules. Plant Biology, 2, 462–470.

    Article  CAS  Google Scholar 

  • Müller, C. (2006). Plant-insect interactions on cuticular surfaces. In M. Riederer & C. Müller (Eds.), Biology of the plant cuticle (pp. 398–422). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Peisker, H., & Gorb, S. N. (2012). Evaporation dynamics of tarsal liquid footprints in flies (Calliphora vicina) and beetles (Coccinella septempunctata). The Journal of Experimental Biology, 215, 1266–1271.

    Article  PubMed  Google Scholar 

  • Peisker, H., Heepe, L., Kovalev, A., & Gorb, S. N. (2014). Comparative study of the fluid viscosity in tarsal hairy attachment systems of flies and beetles. Journal of the Royal Society Interface, 11, 1–7.

    Article  Google Scholar 

  • Peressadko, A., & Gorb, S. (2004). Surface profile and friction force generated by insects. In I. Boblan & R. Bannasch (Eds.), Proceedings of the first international industrial conference bionik (pp. 257–263). Düsseldorf: VDI Verlag.

    Google Scholar 

  • Reitz, M., Gerhardt, H., Schmitt, C., Betz, O., Albert, K., & Laemmerhofer, M. (2015). Analysis of chemical profiles of insect adhesion secretions by gas chromatography-mass spectrometry. Analytica Chimica Acta, 854, 47–60.

    Article  CAS  PubMed  Google Scholar 

  • Scholz, I., Bückins, M., Dolge, L., Erlinghagen, T., Weth, A., Hischen, F., Mayer, J., Hoffmann, S., Riederer, M., Riedel, M., & Baumgartner, W. (2010). Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. The Journal of Experimental Biology, 213, 115–1125.

    Article  Google Scholar 

  • Starov, V. M., Zhdanov, S. A., Kosvintsev, S. R., Sobolev, V. D., & Velarde, M. G. (2003). Spreading of liquid drops over porous substrates. Advances in Colloid and Interface Science, 104, 123–158.

    Article  CAS  PubMed  Google Scholar 

  • Stork, N. E. (1980). Role of waxblooms in preventing attachment to brassicas by the mustard beetle, Phaedon cochleariae. Entomologia Experimentalis et Applicata, 26, 100–107.

    Article  Google Scholar 

  • Voigt, D., Schuppert, J. M., Dattinger, S., & Gorb, S. N. (2008). Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. Journal of Insect Physiology, 54, 765–776.

    Article  CAS  PubMed  Google Scholar 

  • Vötsch, W., Nicholson, G., Müller, R., Stierhof, Y.-D., Gorb, S. N., & Schwarz, U. (2002). Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochemistry and Molecular Biology, 32, 1605–1613.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This book chapter is adapted from the publication Gorb, E.V. et al. Oil adsorption ability of three-dimensional epicuticular wax coverages in plants, Sci. Rep. 7, 45483; doi: 10.1038/srep45483 (2017). This work was partly supported by the CARBTRIB Project of The Leverhulme Trust (U. K.) to S. N. G. and E. V. G. and the Georg Forster Research Award (Alexander von Humboldt Foundation, Germany) to A. E. F. The authors acknowledge Alexander Kovalev (Kiel University, Germany) for his help in improving the MatLab program for the numerical analysis of experimental data and Lars Heepe (Kiel University, Germany) for useful discussions on adsorption phenomenon and for comments on the early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Gorb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gorb, E.V., Hofmann, P., Filippov, A.E., Gorb, S.N. (2017). Sucking the Oil: Adsorption Ability of Three-Dimensional Epicuticular Wax Coverages in Plants As a Possible Mechanism Reducing Insect Wet Adhesion. In: Gorb, S., Gorb, E. (eds) Functional Surfaces in Biology III. Biologically-Inspired Systems, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-74144-4_6

Download citation

Publish with us

Policies and ethics