Moisture-Harvesting Reptiles: A Review

  • Anna-Christin JoelEmail author
  • Gerda Buchberger
  • Philipp Comanns
Part of the Biologically-Inspired Systems book series (BISY, volume 10)


Reptiles can live in arid environments due to special adaptations of their integument to such habitats. So called moisture-harvesting reptiles show behavioral and morphological adaptations, as their diet often does not cover the complete water demand and rain is scarce. The collection of water from various sources by moisture-harvesting reptiles is often accompanied by a stereotypical behavior: snakes coil up in the open and show a dorso-ventral flattening of their body to increase the surface area. Lizards also show a flattening of their body, but additionally raise their abdomen by splaying and extending their legs and lowering their head and tail. A similar behavior is observed in tortoises. Though there are several behavioral descriptions of moisture-harvesting reptiles, there are only few investigations about the physical principles enabling a passive collection of water. Special skin structures, comprising a micro structured surface with capillary channels in between imbricate overlapping scales, enable lizards to collect water efficiently. In some lizards, such as the Texas horned lizard Phrynosoma cornutum, water droplets applied to their body surface show a preferred spreading direction, transporting the water towards their mouth for ingestion. This passive directional transport is enabled by asymmetric and interconnected channels between the scales. Elucidation of the physical principles behind the directional water spreading has inspired a biomimetic transfer to optimize future applications in liquid handling, e.g. in fields of microfluidics.



Many thanks to Werner Baumgartner for inspiration and helpful comments related to this work. The authors’ work was supported by the European Commission within the project ‘LiNaBioFluid’ [665337].


  1. Alibardi, L. (2003). Adaptation to the land: The skin of reptiles in comparison to that of amphibians and endotherm amniotes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 298, 12–41.CrossRefGoogle Scholar
  2. Alibardi, L., & Maderson, P. F. (2003). Observations on the histochemistry and ultrastructure of the epidermis of the tuatara, Sphenodon punctatus (Sphenodontida, Lepidosauria, Reptilia): A contribution to an understanding of the lepidosaurian epidermal generation and the evolutionary origin of the squamate shedding complex. Journal of Morphology, 256, 111–133.CrossRefPubMedGoogle Scholar
  3. Andrade, D. V., & Abe, A. S. (2000). Water collection by the body in a viperid snake, Bothrops moojeni. Amphibia-Reptilia, 21, 485–492.CrossRefGoogle Scholar
  4. Ashton, K., & Johnson, J. (1998). Crotalus viridis concolor (Midget faded rattlesnake): Drinking from skin. Herpetological Review, 29, 170.Google Scholar
  5. Auffenberg, W. (1963). A note on the drinking habits of some land tortoises. Animal Behaviour, 11, 72–73.CrossRefGoogle Scholar
  6. Bentley, P. J., & Blumer, W. F. C. (1962). Uptake of water by the lizard, Moloch horridus. Nature, 194, 699–700.CrossRefPubMedGoogle Scholar
  7. Berthier, J., & Silberzan, P. (2010). Microfluidics for biotechnology. London/Boston: Artech House.Google Scholar
  8. Bormashenko, E. Y. (2013). Wetting of real surfaces. Berlin: Walter de Gruyter.CrossRefGoogle Scholar
  9. Bradshaw, S. D. (1986). Ecophysiology of desert reptiles. London: Academic.Google Scholar
  10. Bradshaw, S. D., & Shoemaker, V. H. (1967). Aspects of water and electrolyte changes in a field population of Amphibolurus lizards. Comparative Biochemistry and Physiology, 20, 855–865.CrossRefGoogle Scholar
  11. Buchberger, G., Hischen, F., Comanns, P., Baumgartner, R., Kogler, A., Buchsbaum, A., Bauer, S., & Baumgartner, W. (2015). Bio-inspired microfluidic devices for passive, directional liquid transport: Model-based adaption for different materials. Procedia Engineering, 120, 106–111.CrossRefGoogle Scholar
  12. Bulova, S. J. (2002). How temperature, humidity, and burrow selection affect evaporative water loss in desert tortoises. Journal of Thermal Biology, 27, 175–189.CrossRefGoogle Scholar
  13. Cardwell, M. D. (2006). Rain-harvesting in a wild population of Crotalus s. scutulatus (Serpentes: Viperidae). Herpetological Review, 37, 142–144.Google Scholar
  14. Cassie, A. B. D. (1948). Contact angles. Discussions of the Faraday Society, 3, 11–16.CrossRefGoogle Scholar
  15. Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Journal of the Chemical Society, Faraday Transactions, 40, 546–551.CrossRefGoogle Scholar
  16. Channing, A., & Wahlberg, K. (2011). Distribution and conservation status of the desert rain frog Breviceps macrops. African Journal of Herpetology, 60, 101–112.CrossRefGoogle Scholar
  17. Cloudsley-Thompson, J. L. (1971). The temperature and water relations of reptiles. Watford: Merrow Publishing Co.Google Scholar
  18. Cloudsley-Thompson, J. L. (1991). Ecophysiology of desert arthropods and reptiles. Berlin: Springer.CrossRefGoogle Scholar
  19. Cole, L. C. (1943). Experiments on toleration of high temperature in lizards with reference to adaptive coloration. Ecology, 24, 94–108.CrossRefGoogle Scholar
  20. Comanns, P., Effertz, C., Hischen, F., Staudt, K., Bohme, W., & Baumgartner, W. (2011). Moisture harvesting and water transport through specialized micro-structures on the integument of lizards. Beilstein Journal of Nanotechnology, 2, 204–214.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Comanns, P., Winands, K., Arntz, K., Klocke, F., & Baumgartner, W. (2014). Laser-based biomimetic functionalization of surfaces: From moisture harvesting lizards to specific fluid transport systems. International Journal of Design & Nature and Ecodynamics, 9, 206–215.CrossRefGoogle Scholar
  22. Comanns, P., Buchberger, G., Buchsbaum, A., Baumgartner, R., Kogler, A., Bauer, S., & Baumgartner, W. (2015). Directional, passive liquid transport: The Texas horned lizard as a model for a biomimetic ‘liquid diode’. Journal of the Royal Society Interface, 12, 20150415.CrossRefPubMedCentralGoogle Scholar
  23. Comanns, P., Withers, P. C., Esser, F. J., & Baumgartner, W. (2016). Cutaneous water collection by a moisture-harvesting lizard, the thorny devil Moloch horridus. The Journal of Experimental Biology, 219, 3473–3479.CrossRefPubMedGoogle Scholar
  24. Cooper, W. E., & Burns, N. (1987). Social significance of ventrolateral coloration in the fence lizard, Sceloporus undulatus. Animal Behaviour, 35, 526–532.CrossRefGoogle Scholar
  25. Cooper, W. E., & Sherbrooke, W. C. (2012). Choosing between a rock and a hard place: Camouflage in the round-tailed horned lizard Phrynosoma modestum. Current Zoology, 58, 541–548.CrossRefGoogle Scholar
  26. de Gennes, P., Brochard-Wyart, F., & Quéré, D. (2004). Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. New York: Springer.CrossRefGoogle Scholar
  27. Ditmars, R. L. (1933). Reptiles of the world. New York: The MacMillan Company.Google Scholar
  28. Douglass, J. F., & Layne, J. N. (1978). Activity and thermoregulation of the gopher tortoise (Gopherus polyphemus) in southern Florida. Herpetologica, 34, 359–374.Google Scholar
  29. Fitzgerald, M. (1983). A note on water collection by the bearded dragon Amphibolurus vitticeps. Herpetofauna, Sydney, 14, 93.Google Scholar
  30. Gans, C., Merlin, R., & Blumer, W. (1982). The water-collecting mechanism of Moloch horridus re-examined. Amphibia-Reptilia, 3, 57–64.CrossRefGoogle Scholar
  31. Glaudas, X. (2009). Rain-harvesting by the Southwestern Speckled Rattlesnake (Crotalus mitchellii pyrrhus). The Southwestern Naturalist, 54, 518–521.CrossRefGoogle Scholar
  32. Greene, H. W. (1986). Natural history and evolutionary biology. Predator-prey relationships. Chicago: Chicago Press.Google Scholar
  33. Heath, J. E. (1962). Temperature-independent morning emergence in lizards of the genus Phrynosoma. Science, 138, 891–892.CrossRefPubMedGoogle Scholar
  34. Lasiewski, R. C., & Bartholomew, G. A. (1969). Condensation as a mechanism for water gain in nocturnal desert Poikilotherms. Copeia, 1969, 405–407.CrossRefGoogle Scholar
  35. Ligon, R. A., & McGraw, K. J. (2013). Chameleons communicate with complex colour changes during contests: Different body regions convey different information. Biology Letters, 9, 20130892.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lillywhite, H. B. (2006). Water relations of tetrapod integument. The Journal of Experimental Biology, 209, 202–226.CrossRefPubMedGoogle Scholar
  37. Louw, G. N. (1972). The role of advective fog in the water economy of certain Namib Desert animals. Symposia of the Zoological Society of London, 31, 297–314.Google Scholar
  38. Maderson, P. F. A., Rabinowitz, T., Tandler, B., & Alibardi, L. (1998). Ultrastructural contributions to an understanding of the cellular mechanisms involved in lizard skin shedding with comments on the function and evolution of a unique lepidosaurian phenomenon. Journal of Morphology, 236, 1–24.CrossRefGoogle Scholar
  39. Mata-Silva, V., Johnson, J. D., Rocha, A., & Dilks, S. (2014). Rainwater-harvesting by the rock rattlesnake, Crotalus lepidus, in the Chihuahuan Desert of western Texas. The Southwestern Naturalist, 59, 303–304.CrossRefGoogle Scholar
  40. Medica, P. A., Bury, R. B., & Luckenbach, R. A. (1980). Drinking and construction of water catchments by the desert tortoise, Gopherus agassizii, in the Mojave Desert. Herpetologica, 36, 301–304.Google Scholar
  41. Mertens, R. (1960). The world of amphibians and reptiles. New York: McGraw-Hill.Google Scholar
  42. Miller, D. (1985). Rain water drinking by the mangrove water snake, Nerodia fasciata compressicauda. Herpetological Review, 16, 71.Google Scholar
  43. Minnich, J. E., & Shoemaker, V. H. (1972). Water and electrolyte turnover in a field population of the lizard, Uma scoparia. Copeia, 1972, 650–659.CrossRefGoogle Scholar
  44. Nagy, K. A. (1987). How do desert animals get enough water. In L. Berkofsky & M. G. Wurtele (Eds.), Progress in desert research (pp. 89–98). Totowa: Rowman and Littlefield.Google Scholar
  45. Pearson, O. P. (1977). The effect of substrate and skin color on thermoregulation of a lizard. Comparative Biochemistry and Physiology, 58, 353–358.CrossRefGoogle Scholar
  46. Peterson, C. C. (1998). Rain-harvesting behavior by a free-ranging desert horned lizard (Phrynosoma platyrhinos). The Southwestern Naturalist, 43, 391–394.Google Scholar
  47. Pfennig, D. (2012). Mimicry: Ecology, evolution, and development. Current Zoology, 58, 604–607.CrossRefGoogle Scholar
  48. Pianka, E. R., & Pianka, H. D. (1970). The ecology of Moloch horridus (Lacertilia: Agamidae) in Western Australia. Copeia, 1970, 90–103.CrossRefGoogle Scholar
  49. Powell, G. L., & Russell, A. P. (1985). Field thermal ecology of the eastern short-horned lizard (Phrynosoma douglassi brevirostre) in Southern Alberta. Canadian Journal of Zoology, 63, 228–238.CrossRefGoogle Scholar
  50. Repp, R. A., & Schuett, G. W. (2008). Western diamond-backed rattlesnakes, Crotalus atrox (Serpentes: Viperidae), gain water by harvesting and drinking rain, sleet, and snow. The Southwestern Naturalist, 53, 108–114.CrossRefGoogle Scholar
  51. Roberts, J. B., & Lillywhite, H. B. (1980). Lipid barrier to water exchange in reptile epidermis. Science, 207, 1077–1079.CrossRefPubMedGoogle Scholar
  52. Robinson, M. D., & Hughes, D. A. (1978). Observations on the natural history of Peringuey’s adder, Bitis peringueyi (Boulenger) (Reptilia: Viperidae). Annals of the Transvaal Museum, 31, 189–193.Google Scholar
  53. Sasaki, K., & Duvall, D. (2003). Rainwater drinking by free-ranging Japanese pitvipers, Gloydius blomhoffii. Current herpetology, 22, 43–44.CrossRefGoogle Scholar
  54. Schwenk, K., & Greene, H. W. (1987). Water collection and drinking in Phrynocephalus helioscopus: A possible condensation mechanism. Journal of Herpetology, 21, 134–139.CrossRefGoogle Scholar
  55. Seshadri, C. (1957). Water conservation in Uromastix hardwickii (Gray), with a note on the presence of Mullerian ducts in the male. Journal of the Zoological Society India, 9, 103–113.Google Scholar
  56. Sherbrooke, W. C. (1981). Horned lizards: Unique reptiles of Western North America. Globe: Southwest Parks and Monuments Association.Google Scholar
  57. Sherbrooke, W. C. (1990). Rain-harvesting in thelizard, Phrynosoma cornutum: Behavior and integumental morphology. Journal of Herpetology, 24, 302–308.CrossRefGoogle Scholar
  58. Sherbrooke, W. C. (1993). Rain-drinking behaviors of the Australian Thorny Devil (Sauria: Agamidae). Journal of Herpetology, 27, 270–275.CrossRefGoogle Scholar
  59. Sherbrooke, W. C. (1997). Physiological (rapid) change of color in horned lizards (Phrynosoma) of arid habitats: Hormonal regulation, effects of temperature, and role in nature. Amphibia -Reptilia, 18, 155–175.CrossRefGoogle Scholar
  60. Sherbrooke, W. C. (2002). Do vertebral-line patterns in two horned lizards (Phrynosoma spp.) mimic plant-stem shadows and stem litter? Journal of Arid Environments, 50, 109–120.CrossRefGoogle Scholar
  61. Sherbrooke, W. C. (2004). Integumental water movement and rate of water ingestion during rain harvesting in the Texas horned lizard, Phrynosoma cornutum. Amphibia -Reptilia, 25, 29–39.CrossRefGoogle Scholar
  62. Sherbrooke, W. C., Scardino, A. J., de Nys, R., & Schwarzkopf, L. (2007). Functional morphology of scale hinges used to transport water: Convergent drinking adaptations in desert lizards (Moloch horridus and Phrynosoma cornutum). Zoomorphology, 126, 89–102.CrossRefGoogle Scholar
  63. Stuart-Fox, D., Whiting, M. J., & Moussalli, A. (2006). Camouflage and colour change: Antipredator responses to bird and snake predators across multiple populations in a dwarf chameleon. Biological Journal of the Linnean Society, 88, 437–446.CrossRefGoogle Scholar
  64. Thompson, C. W., & Moore, M. C. (1991). Throat color reliably signals status in male tree lizards, Urosaurus ornatus. Animal Behaviour, 42, 745–753.CrossRefGoogle Scholar
  65. Vesely, M., & Modry, D. (2002). Rain-harvesting behavior in agamid lizards (Trapelus). Journal of Herpetology, 36, 311–314.CrossRefGoogle Scholar
  66. Walton, B. M., & Bennett, A. F. (1993). Temperature-dependent color change in Kenyan chameleons. Physiological Zoology, 66, 270–287.CrossRefGoogle Scholar
  67. Watson, G. S., Cribb, B. W., Schwarzkopf, L., & Watson, J. A. (2015a). Contaminant adhesion (aerial/ground biofouling) on the skin of a gecko. Journal of the Royal Society Interface, 12, 20150318.CrossRefPubMedCentralGoogle Scholar
  68. Watson, G. S., Green, D. W., Schwarzkopf, L., Li, X., Cribb, B. W., Myhra, S., & Watson, J. A. (2015b). A gecko skin micro/nano structure – A low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomaterialia, 21, 109–122.CrossRefPubMedGoogle Scholar
  69. Weese, A. O. (1917). An experimental study of the reactions of the horned lizard, Phrynosoma modestum Gir., a reptile of the semi-desert. The Biological Bulletin, 32, 98–116.CrossRefGoogle Scholar
  70. Weese, A. O. (1919). Environmental reactions of Phrynosoma. The American Naturalist, 53, 33–54.CrossRefGoogle Scholar
  71. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28, 988–994.CrossRefGoogle Scholar
  72. Withers, P. C. (1993). Cutaneous water acquisition by the thorny devil (Moloch horridus, Agamidae). Journal of Herpetology, 27, 265–270.CrossRefGoogle Scholar
  73. Withers, P. C., & Dickman, C. R. (1995). The role of diet in determining water, energy and salt intake in the thorny devil Moloch horridus (Lacertilia: Agamidae). Journal of the Royal Society of Western Australia, 78, 3–11.Google Scholar
  74. Yenmiş, M., Ayaz, D., Sherbrooke, W. C., & Veselý, M. (2015). A comparative behavioural and structural study of rain-harvesting and non-rain-harvesting agamid lizards of Anatolia (Turkey). Zoomorphology, 135, 137–148.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Anna-Christin Joel
    • 1
    • 2
    Email author
  • Gerda Buchberger
    • 3
  • Philipp Comanns
    • 1
  1. 1.Institute of Zoology, RWTH Aachen UniversityAachenGermany
  2. 2.Westphalian Institute of Biomimetics, Westphalian University of Applied ScienceBocholtGermany
  3. 3.Institute of Biomedical Mechatronics, JKU LinzLinzAustria

Personalised recommendations