Advertisement

Photonics in Nature: From Order to Disorder

  • Villads Egede Johansen
  • Olimpia Domitilla Onelli
  • Lisa Maria Steiner
  • Silvia Vignolini
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 10)

Abstract

The most vibrant and striking colours in living organisms are often caused by a combination of pigments and nano-scale transparent architectures, which interact with light to produce so-called structural colours. These colours are the result of light interfering with the nano-scale structures that are present in the materials. Such colour-producing structures are not perfect, and irregularities in the arrangements (disorder) are present in many organisms. However, disorder in natural structures is not detrimental but functional, as it allows a broader range of optical effects. This chapter reviews and attempts to classify structurally coloured organisms, highlighting the influence that disorder has on their visual appearance. It also showcases how photonic systems, such as the blue Morpho butterfly and the white Cyphochilus beetle, are capable of obtaining optical properties (long-distance visibility and whiteness, respectively) where disorder seems to be highly optimized, indicating that disorder is important for obtaining complex visual effects in natural systems.

The chapter first introduces the mathematical concepts required for analysing disordered systems, such as the Fourier transform and the structure factor. Ordered and disordered natural photonic systems are then reviewed. This is followed by examples of completely disordered structures responsible for white appearances. Finally, we review the possibilities of hierarchical organisation and pixelated surfaces to widen the range of optical appearances.

Notes

Acknowledgements

This work was supported by a BBSRC David Phillips fellowship [BB/K014617/1], the European Research Council [ERC-2014-STG H2020 639088] and the European Commission [Marie Curie Fellowship LODIS, 701455]. The authors thank Rox Middleton for proofreading the manuscript.

References

  1. Åkerlind, C., Arwin, H., Hallberg, T., Landin, J., Gustafsson, J., Kariis, H., & Järrendahl, K. (2015). Scattering and polarization properties of the scarab beetle Cyphochilus insulanus cuticle. Applied Optics, 54, 6037–6045.CrossRefPubMedGoogle Scholar
  2. Akkermans, E., & Montambaux, G. (2007). Mesoscopic physics of electrons and photons. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Almeida, S. P., & Fujii, H. (1979). Fourier transform differences and averaged similarities in diatoms. Applied Optics, 18, 1663–1667.CrossRefPubMedGoogle Scholar
  4. Anderson, T. F., & Richards, A. G. (1942). An electron microscope study of some structural colors of insects. Journal of Applied Physics, 13, 748–758.CrossRefGoogle Scholar
  5. Arwin, H., Magnusson, R., Landin, J., & Järrendahl, K. (2012). Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson. Philosophical Magazine, 92, 1583–1599.CrossRefGoogle Scholar
  6. Bálint, Z., Kertész, K., Piszter, G., Vértesy, Z., & Biró, L. P. (2012). The well-tuned blues: The role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae). Journal of the Royal Society Interface, 9, 1745–1756.Google Scholar
  7. Bell, G. R. R., Mäthger, L. M., Gao, M., Senft, S. L., Kuzirian, A. M., Kattawar, W. G., & Hanlon, R. T. (2014). Diffuse white structural coloration from multilayer reflectors in a squid. Advanced Materials, 26, 4352–4356.CrossRefPubMedGoogle Scholar
  8. Benedek, G. B. (1971). Theory of transparency of the eye. Applied Optics, 10, 459–473.CrossRefPubMedGoogle Scholar
  9. Berthier, S., Boulenguez, J., & Bálint, Z. (2007). Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: Application to anti-counterfeiting of banknotes. Applied Physics A, 86, 123–130.CrossRefGoogle Scholar
  10. Bossard, J. A., Lin, L., & Werner, D. H. (2016). Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm. Journal of the Royal Society Interface, 13, 20150975.Google Scholar
  11. Burresi, M., Cortese, L., Pattelli, L., Kolle, M., Vukusic, P., Wiersma, D. S., Steiner, U., & Vignolini, S. (2014). Bright-white beetle scales optimise multiple scattering of light. Scientific Reports, 4(6075).Google Scholar
  12. Byrnes, S. J. (2016). Multilayer optical calculations. arXiv e-prints, arXiv:1603.02720v2.Google Scholar
  13. Caveney, S. (1971). Cuticle reflectivity and optical activity in scarab beetles: The role of uric acid. Proceedings of the Royal Society of London. Series B, 178, 205–225.Google Scholar
  14. Chandler, C. J., Wilts, B. D., Vignolini, S., Brodie, J., Steiner, U., Rudall, P. J., Glover, B. J., Gregory, T., & Walker, R. H. (2015). Structural colour in Chondrus crispus. Scientific Reports, 5, 11645.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chandler, C. J., Wilts, B. D., Brodie, J., & Vignolini, S. (2017). Structural color in marine algae. Advanced Optical Materials, 5, 1600646.Google Scholar
  16. Cortese, L., Pattelli, L., Utel, F., Vignolini, S., Burresi, M., & Wiersma, D. S. (2015). Light transport: Anisotropic light transport in white beetle scales. Advanced Optical Materials, 3, 1337–1341.CrossRefGoogle Scholar
  17. De Tommasi, E., Rea, I., Mocella, V., Moretti, L., De Stefano, M., Rendina, I., & De Stefano, L. (2010). Multi-wavelength study of light transmitted through a single marine centric diatom. Optics Express, 18, 12203–12212.CrossRefPubMedGoogle Scholar
  18. Del Río, L. F., Arwin, H., & Järrendahl, K. (2016). Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus. Physical Review E, 94, 012409.CrossRefGoogle Scholar
  19. Dellieu, L., Cael, G., Louette, M., Herman, A., Deparis, O., & Sarrazin, M. (2017). Light coherence time modifies color perception of living beings. Materials Today, 4, 4952–4958.CrossRefGoogle Scholar
  20. Denton, E. J. (1970). Review lecture: On the organization of reflecting surfaces in some marine animals. Philosophical Transactions of the Royal Society of London. B, 258, 285–313.Google Scholar
  21. Denton, E. J., & Land, M. F. (1971). Mechanism of reflexion in silvery layers of fish and cephalopods. Proceedings of the Royal Society of London. Series B, 178, 43–61.Google Scholar
  22. Divitt, S., & Novotny, L. (2015). Spatial coherence of sunlight and its implications for light management in photovoltaics. Optica, 2, 95–103.CrossRefGoogle Scholar
  23. Dong, B. Q., Liu, X. H., Zhan, T. R., Jiang, L. P., Yin, H. W., Liu, F., & Zi, J. (2010). Structural coloration and photonic pseudogap in natural random close-packing photonic structures. Optics Express, 18, 14430–14438.CrossRefPubMedGoogle Scholar
  24. Donges, A. (1998). The coherence length of black-body radiation. European Journal of Physics, 19, 245–249.CrossRefGoogle Scholar
  25. Doucet, S. M., & Meadows, M. G. (2009). Iridescence: A functional perspective. Journal of the Royal Society Interface, 6, 115–132.Google Scholar
  26. Eliason, C. M., & Shawkey, M. D. (2012). A photonic heterostructure produces diverse iridescent colours in duck wing patches. Journal of the Royal Society Interface, 9, 2279–2289.Google Scholar
  27. Froufe-Pérez, L. S., Engel, M., Damasceno, P. F., Muller, N., Haberko, J., Glotzer, S. C., & Scheffold, F. (2016). Role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials. Physical Review Letters, 117, 053902.CrossRefPubMedGoogle Scholar
  28. Fuhrmann, T., Landwehr, S., El Rharbi-Kucki, M., & Sumper, M. (2004). Diatoms as living photonic crystals. Applied Physics B: Lasers and Optics, 78, 257–260.CrossRefGoogle Scholar
  29. Galusha, J. W., Richey, L. R., Gardner, J. S., Cha, J. N., & Bartl, M. H. (2008). Discovery of a diamond-based photonic crystal structure in beetle scales. Physical Review E, 77, 050904.CrossRefGoogle Scholar
  30. Ghiradella, H. (1991). Light and color on the wing: Structural colors in butterflies and moths. Applied Optics, 30, 3492–3500.CrossRefPubMedGoogle Scholar
  31. Ghoshal, A., Eck, E., & Morse, D. E. (2016a). Biological analogs of RGB pixelation yield white coloration in giant clams. Optica, 3, 108–111.CrossRefGoogle Scholar
  32. Ghoshal, A., Eck, E., Gordon, M., & Morse, D. E. (2016b). Wavelength-specific forward scattering of light by Bragg-reflective iridocytes in giant clams. Journal of the Royal Society Interface, 13, 20160285.Google Scholar
  33. Giraldo, M. A., Yoshioka, S., Liu, C., & Stavenga, D. G. (2016). Coloration mechanisms and phylogeny of Morpho butterflies. The Journal of Experimental Biology, 219, 3936–3944.CrossRefPubMedGoogle Scholar
  34. Glover, B. J., & Whitney, H. M. (2010). Structural colour and iridescence in plants: The poorly studied relations of pigment colour. Annals of Botany, 105, 505–511.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gordon, R., Losic, D., Tiffany, M. A., Nagy, S. S., & Sterrenburg, F. A. S. (2009). The glass menagerie: Diatoms for novel applications in nanotechnology. Trends in Biotechnology, 27, 116–127.CrossRefPubMedGoogle Scholar
  36. Gould, K. S., & Lee, D. W. (1996). Physical and ultrastructural basis of blue leaf iridescence in four Malaysian understory plants. American Journal of Botany, 83, 45–50.CrossRefGoogle Scholar
  37. Graham, R. M., Lee, D. W., & Norstog, K. (1993). Physical and ultrastructural basis of blue leaf iridescence in two neotropical ferns. American Journal of Botany, 80, 198–203.CrossRefGoogle Scholar
  38. Gur, D., Leshem, B., Pierantoni, M., Farstey, V., Oron, D., Weiner, S., & Addadi, L. (2015). Structural basis for the brilliant colors of the sapphirinid copepods. Journal of the American Chemical Society, 137, 8408–8411.CrossRefPubMedGoogle Scholar
  39. Hébant, C., & Lee, D. W. (1984). Ultrastructural basis and developmental control of blue iridescence in Selaginella leaves. American Journal of Botany, 71, 216–219.CrossRefGoogle Scholar
  40. Hecht, E. (2017). Optics (5th ed.). Essex: Pearson.Google Scholar
  41. Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O. S., Wild, R., Hammond, P. M., Ahrens, D., Balke, M., Caterino, M. S., et al. (2007). A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318, 1913–1916.CrossRefPubMedGoogle Scholar
  42. Hwang, J., Song, M. H., Park, B., Nishimura, S., Toyooka, T., Wu, J. W., Takanishi, J., Ishikawa, K., & Takezoe, H. (2005). Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions. Nature Materials, 4, 383–387.CrossRefPubMedGoogle Scholar
  43. Ingram, A. L., & Parker, A. R. (2008). A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Philosophical Transactions of the Royal Society B, 363, 2465–2480.CrossRefGoogle Scholar
  44. Jacobs, M., Lopez-Garcia, M., Phrathep, O. P., Lawson, T., Oulton, R., & Whitney, H. M. (2016). Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency. Nature Plants, 2, 16162.CrossRefPubMedGoogle Scholar
  45. Jewell, S. A., Vukusic, P., & Roberts, N. W. (2007). Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi. New Journal of Physics, 9, 99.CrossRefGoogle Scholar
  46. Jiang, T., Peng, Z., Wu, W., Shi, T., & Liao, G. (2014). Gas sensing using hierarchical micro/nanostructures of Morpho butterfly scales. Sensors and Actuators, A: Physical, 213, 63–69.CrossRefGoogle Scholar
  47. Joannopoulos, J. D., Johnson, S. G., Winn, J. N., & Meade, R. D. (2008). Photonic crystals: Molding the flow of light. Princeton: Princeton University Press.Google Scholar
  48. Johansen, V. E. (2014). Optical role of randomness for structured surfaces. Applied Optics, 53, 2405–2415.CrossRefPubMedGoogle Scholar
  49. Johansen, V. E., Thamdrup, L. H., Smistrup, K., Nielsen, T., Sigmund, O., & Vukusic, P. (2015). Designing visual appearance using a structured surface. Optica, 2, 239–245.CrossRefGoogle Scholar
  50. Johnson, S., & Joannopoulos, J. (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 8, 173–190.CrossRefPubMedGoogle Scholar
  51. Jordan, T. M., Partridge, J. C., & Roberts, N. W. (2012). Non-polarizing broadband multilayer reflectors in fish. Nature Photonics, 6, 759–763.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jordan, T. M., Wilby, D., Chiou, T.-H., Feller, K. D., Caldwell, R. L., Cronin, T. W., & Roberts, N. W. (2016). A shape-anisotropic reflective polarizer in a stomatopod crustacean. Scientific Reports, 6, 21744.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kientz, B., Luke, S., Vukusic, P., Péteri, R., Beaudry, C., Renault, T., Simon, D., Mignot, T., & Rosenfeld, E. (2016). A unique self-organization of bacterial sub-communities creates iridescence in Cellulophaga lytica colony biofilms. Scientific Reports, 6, 19906.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kieu, K., Li, C., Fang, Y., Cohoon, G., Herrera, O. D., Hildebrand, M., Sandhage, K. H., & Norwood, R. A. (2014). Structure-based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii. Optics Express, 22, 15992–15999.CrossRefPubMedGoogle Scholar
  55. Kinoshita, S. (2008). Structural colors in the realm of nature. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
  56. Kinoshita, S., & Yoshioka, S. (2005). Structural colors in nature: The role of regularity and irregularity in the structure. ChemPhysChem, 6, 1442–1459.CrossRefPubMedGoogle Scholar
  57. Kinoshita, S., Yoshioka, S., Fujii, Y., & Okamoto, N. (2002). Photophysics of structural color in the Morpho butterflies. Forma, 17, 103–121.Google Scholar
  58. Kinoshita, S., Yoshioka, S., & Miyazaki, J. (2008). Physics of structural colors. Reports on Progress in Physics, 71, 076401.CrossRefGoogle Scholar
  59. Land, M. F. (1972). The physics and biology of animal reflectors. Progress in Biophysics and Molecular Biology, 24, 75–106.CrossRefPubMedGoogle Scholar
  60. Lathi, B. P. (1998). Signal processing and linear systems. Oxford: Oxford University Press.Google Scholar
  61. Lee, D. W. (1991). Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus. Nature, 349, 260–262.CrossRefGoogle Scholar
  62. Lee, R. T., & Smith, G. S. (2009). Detailed electromagnetic simulation for the structural color of butterfly wings. Applied Optics, 48, 4177–4190.CrossRefPubMedGoogle Scholar
  63. Li, L., Kolle, S., Weaver, J. C., Ortiz, C., Aizenberg, J., & Kolle, M. (2015). A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet. Nature Communications, 6, 6322.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Liu, F., Yin, H., Dong, B., Qing, Y., Zhao, L., Meyer, S., & Liu, X. (2008). Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera). Physical Review E, 77(012901).Google Scholar
  65. Lowry, J. B., & Lee, D. W. (1975). Physical basis and ecological significance of iridescence in blue plants. Nature, 254, 50–51.CrossRefGoogle Scholar
  66. Luke, S. M., Hallam, B. T., & Vukusic, P. (2010). Structural optimization for broadband scattering in several ultra-thin white beetle scales. Applied Optics, 49, 4246–4254.CrossRefPubMedGoogle Scholar
  67. Mason, C. W. (1923). Structural colors in feathers. I. The Journal of Physical Chemistry, 27, 201–251.CrossRefGoogle Scholar
  68. Mäthger, L. M., Denton, E. J., Marshall, N. J., & Hanlon, R. T. (2009). Mechanisms and behavioural functions of structural coloration in cephalopods. Journal of the Royal Society Interface, 6, 149–163.Google Scholar
  69. Michelson, A. A. (1911). LXI. On metallic colouring in birds and insects. Philosophical Magazine Series, 621, 554–567.CrossRefGoogle Scholar
  70. Michielsen, K., & Stavenga, D. G. (2008). Gyroidcuticular structures in butterfly wing scales: Biological photonic crystals. J. Royal Soc. Interface, 5, 85–94.CrossRefGoogle Scholar
  71. Michielsen, K., De Raedt, H., & Stavenga, D. G. (2010). Reflectivity of the gyroidbiophotonic crystals in the ventral wing scales of the green hairstreak butterfly, Callophrys rubi. Journal of the Royal Society Interface, 7, 765–771.Google Scholar
  72. Middleton, R., Steiner, U., & Vignolini, S. (2017). Bio-mimetic structural colour using biopolymers. In: Bio-inspired polymers, ed by Bruns, N., Kilbinger, A.F.M. Cambridge: The Royal Society of Chemistry, 555–585.Google Scholar
  73. Mouchet, S. R., Van Hooijdonk, E., Welch, V. L., Louette, P., Colomer, J.-F., Su, B.-L., & Deparis, O. (2016). Liquid-induced colour change in a beetle: The concept of a photonic cell. Scientific Reports, 6(19322).Google Scholar
  74. Nakamura, E., Yoshioka, S., & Kinoshita, S. (2008). Structural color of rock dove’s neck feather. Journal of the Physical Society of Japan, 77, 124801.CrossRefGoogle Scholar
  75. Neville, A. C., & Caveney, S. (1969). Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biological Reviews, 44, 531–562.CrossRefPubMedGoogle Scholar
  76. Nijhout, H. F. (1985). The developmental physiology of color patterns in Lepidoptera. Advances in Insect Physiology, 18, 181–247.CrossRefGoogle Scholar
  77. Noh, H., Liew, S. F., Saranathan, V., Mochrie, S. G. J., Prum, R. O., Dufresne, E. R., & Cao, H. (2010). How noniridescent colors are generated by quasi-ordered structures of bird feathers. Advanced Materials, 22, 2871–2880.CrossRefPubMedGoogle Scholar
  78. Noyes, J. A., Vukusic, P., & Hooper, I. R. (2007). Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle. Optics Express, 15, 4351–4358.CrossRefPubMedGoogle Scholar
  79. Noyes, J., Sumper, M., & Vukusic, P. (2008). Light manipulation in a marine diatom. Journal of Materials Research, 23, 3229–3235.CrossRefGoogle Scholar
  80. Onelli, O. D., van de Kamp, T., Skepper, J. N., Powell, J., dos Santos Rolo, T., Baumbach, T., & Vignolini, S. (2017). Development of structural colour in leaf beetles. Scientific Reports, 7, 1373.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., & Johnson, S. G. (2010). Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 181, 687–702.CrossRefGoogle Scholar
  82. Parker, A. R. (1998). The diversity and implications of animal structural colours. The Journal of Experimental Biology, 201, 2343–2347.PubMedGoogle Scholar
  83. Parker, A. R. (2000). 515 million years of structural colour. Journal of Optics A: Pure and Applied Optics, 2, R15–R28.Google Scholar
  84. Parker, A. R. (2005). A geological history of reflecting optics. Journal of the Royal Society Interface, 2, 1–17.Google Scholar
  85. Parker, A. R., McPhedran, R. C., McKenzie, D. R., & Botten, L. C. (2001). Photonic engineering. Aphrodite’s iridescence. Nature, 409, 36–37.CrossRefPubMedGoogle Scholar
  86. Prum, R.O. (2006). Anatomy, physics, and evolution of structural colors. In: Bird coloration, Vol. 1, ed. by Hill, G.E., McGraw, K. J. Cambridge: Harvard University Press, 295–353.Google Scholar
  87. Prum, R. O., & Torres, R. H. (2003a). A fourier tool for the analysis of coherent light scattering by bio-optical nanostructures. Integrative and Comparative Biology, 43, 591–602.CrossRefPubMedGoogle Scholar
  88. Prum, R. O., & Torres, R. H. (2003b). Structural colouration of avian skin: Convergent evolution of coherently scattering dermal collagen arrays. The Journal of Experimental Biology, 206, 2409–2429.CrossRefPubMedGoogle Scholar
  89. Prum, R.O. and Torres, R.H. (2013). Fourier blues: Structural coloration of biological tissues. In: Excursions in harmonic analysis, Vol. 2, ed. by Andrews, T.D., Balan, R., Benedetto, J.J., Czaja, W., Okoudjou, K.A. New York: Springer, 401–421.Google Scholar
  90. Prum, R. O., Morrison, R. L., & Ten Eyck, G. R. (1994). Structural color production by constructive reflection from ordered collagen arrays in a bird (Philepitta castanea: Eurylaimidae). Journal of Morphology, 222, 61–72.CrossRefGoogle Scholar
  91. Prum, R. O., Torres, R. H., Williamson, S., & Dyck, J. (1998). Coherent light scattering by blue feather barbs. Nature, 396, 28–39.CrossRefGoogle Scholar
  92. Prum, R. O., Torres, R., Williamson, S., & Dyck, J. (1999). Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proceedings of the Royal Society of London. Series B, 266, 13–22.Google Scholar
  93. Rayleigh, L. (1919). VII. On the optical character of some brilliant animal colours. Philosophical Magazine Series, 6(37), 98–111.Google Scholar
  94. Saba, M., Wilts, B. D., Hielscher, J., & Schröder-Turk, G. E. (2014). Absence of circular polarisation in reflections of butterfly wing scales with chiral Gyroid structure. Materials Today, 1, 193–208.CrossRefGoogle Scholar
  95. Saito, A., Yoshioka, S.-Y., & Kinoshita, S. (2004). Reproduction of the Morpho butterfly’s blue: Arbitration of contradicting factors. Proceedings of SPIE – The International Society for Optical Engineering, 5526, 188–194.Google Scholar
  96. Saito, A., Miyamura, Y., Nakajima, M., Ishikawa, Y., Sogo, K., Kuwahara, Y., & Hirai, Y. (2006). Reproduction of the Morpho blue by nanocasting lithography. Journal of Vacuum Science and Technology B, 24, 3248–3251.CrossRefGoogle Scholar
  97. Saito, A., Yonezawa, M., Murase, J., Juodkazis, S., Mizeikis, V., Akai-Kasaya, M., & Kuwahara, Y. (2011). Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale. Journal of Nanoscience and Nanotechnology, 11, 2785–2792.CrossRefPubMedGoogle Scholar
  98. Saito, A., Shibuya, T., Yonezawa, M., Akai-Kasaya, M., & Kuwahara, Y. (2013). Simulation analysis on the optical role of the number of randomly arranged nano-trees on the Morpho butterfly’s scale. Proceedings of SPIE – The International Society for Optical Engineering, 8686.  https://doi.org/10.1117/12.2012036.
  99. Schoen, A. H. (1970). Three dimensional Euclidean space partitioned into interpenetrating labyrinths by infinite periodic minimal surfaces without self intersections, NASA-TN-D-5541, C-98. Cambridge: NASA Electronics Research Center.Google Scholar
  100. Schröder-Turk, G. E., Wickham, S., Averdunk, H., Brink, F., Gerald, J. D. F., Poladian, L., & Hyde, S. T. (2011). The chiral structure of porous chitin within the wing-scales of Callophrys rubi. Journal of Structural Biology, 174, 290–295.CrossRefPubMedGoogle Scholar
  101. Schultz, T. D., & Bernard, G. D. (1989). Pointillistic mixing of interference colours in cryptic tiger beetles. Nature, 337, 72–73.CrossRefGoogle Scholar
  102. Seago, A. E., Brady, P., Vigneron, J. P., & Schultz, T. D. (2009). Gold bugs and beyond: A review of iridescence and structural colour mechanisms in beetles (Coleoptera). Journal of the Royal Society Interface, 6, 165–184.Google Scholar
  103. Sellers, S. R., Man, W., Saba, M., & Florescu, M. (2017). Local self-uniformity in photonic networks. Nature Communications, 8, 14439.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Sharma, V., Crne, M., Park, J. O., & Srinivasarao, M. (2009). Structural origin of circularly polarized iridescence in jeweled beetles. Science, 325, 449–451.CrossRefPubMedGoogle Scholar
  105. Shawkey, M. D., Saranathan, V., Palsdottir, H., Crum, J., Ellisman, M. H., Auer, M., & Prum, R. O. (2009). Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure. Journal of the Royal Society Interface, 6, 213–220.Google Scholar
  106. Song, B., Johansen, V. E., Sigmund, O., & Shin, J. H. (2017). Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection. Scientific Reports, 7, 46023.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Starkey, T., & Vukusic, P. (2013). Light manipulation principles in biological photonic systems. Nanophotonics, 2, 289–307.CrossRefGoogle Scholar
  108. Stavenga, D. G., Leertouwer, H. L., Marshall, N. J., & Osorio, D. (2011a). Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proceedings of the Royal Society of London. Series B, Biological Sciences 278, 2098–2104.Google Scholar
  109. Stavenga, D. G., Wilts, B. D., Leertouwer, H. L., & Hariyama, T. (2011b). Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 709–723.Google Scholar
  110. Steinbrecht, R. A., Mohren, W., & Schneider, D. (1985). Cuticular interference reflectors in the golden pupae of danaine butterflies. Proceedings of the Royal Society of London. Series B, 226, 367–390.Google Scholar
  111. Strout, G., Russell, S. D., Pulsifer, D. P., Erten, S., Lakhtakia, A., & Lee, D. W. (2013). Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata. Annals of Botany, 112, 1141–1148.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Sumper, M., & Brunner, E. (2006). Learning from diatoms: Nature’s tools for the production of nanostructured silica. Advanced Functional Materials, 16, 17–26.CrossRefGoogle Scholar
  113. Sun, J., Bhushan, B., & Tong, J. (2013). Structural coloration in nature. RSC Advances, 3, 14862–14889.CrossRefGoogle Scholar
  114. Thomas, K. R., Kolle, M., Whitney, H. M., Glover, B. J., & Steiner, U. (2010). Function of blue iridescence in tropical understorey plants. Journal of the Royal Society Interface, 7, 1699–1707.Google Scholar
  115. Toninelli, C. (2007). Light transport in photonic structures: Interplay between order and disorder (PhD thesis). Florence: Lens.Google Scholar
  116. Trzeciak, T. M., & andVukusic, P. (2009). Photonic crystal fiber in the polychaete worm Pherusa sp. Physical Review E, 80, 061908.CrossRefGoogle Scholar
  117. van der Kooi, C. J., Wilts, B. D., Leertouwer, H. L., Staal, M., Elzenga, J. T. M., & Stavenga, D. G. (2014). Iridescent flowers? Contribution of surface structures to optical signaling. The New Phytologist, 203, 667–673.CrossRefPubMedGoogle Scholar
  118. van der Kooi, C. J., Dyer, A. G., & Stavenga, D. G. (2015). Is floral iridescence a biologically relevant cue in plant-pollinator signaling? The New Phytologist, 205, 18–20.CrossRefPubMedGoogle Scholar
  119. Vignolini, S., Rudall, P. J., Rowland, A. V., Reed, A., Moyroud, E., Faden, R. B., Baumberg, J. J., Glover, B. J., & Steiner, U. (2012). Pointillist structural color in Pollia fruit. Proceedings of the National Academy of Sciences of the United States of America, 109, 15712–15715.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Vignolini, S., Moyroud, E., Glover, B. J., & Steiner, U. (2013). Analysing photonic structures in plants. Journal of The Royal Society Interface, 10, 20130394.CrossRefPubMedCentralGoogle Scholar
  121. Vignolini, S., Moyroud, E., Hingant, T., Banks, H., Rudall, P. J., Steiner, U., & Glover, B. (2015a). Is floral iridescence a biologically relevant cue in plant-pollinator signalling? A response to van der Kooi et al. (2014b). The New Phytologist, 205, 21–22.CrossRefPubMedGoogle Scholar
  122. Vignolini, S., Moyroud, E., Hingant, T., Banks, H., Rudall, P. J., Steiner, U., & Glover, B. J. (2015b). The flower of Hibiscus trionum is both visibly and measurably iridescent. The New Phytologist, 205, 97–101.CrossRefPubMedGoogle Scholar
  123. Vignolini, S., Gregory, T., Kolle, M., Lethbridge, A., Moyroud, E., Steiner, U., Glover, B. J., Vukusic, P., & Rudall, P. J. (2016). Structural colour from helicoidal cell-wall architecture in fruits of Margaritaria nobilis. Journal of The Royal Society Interface, 13, 20160645.CrossRefPubMedCentralGoogle Scholar
  124. Vukusic, P., & Sambles, J. R. (2003). Photonic structures in biology. Nature, 424, 852–855.CrossRefPubMedGoogle Scholar
  125. Vukusic, P., & Stavenga, D. G. (2009). Physical methods for investigating structural colours in biological systems. Journal of The Royal Society Interface, 6, 133–148.Google Scholar
  126. Vukusic, P., Sambles, J. R., Lawrence, C. R., & Wootton, R. J. (1999). Quantified interference and diffraction in single Morpho butterfly scales. Proceedings of the Royal Society B, 266, 1403–1411.CrossRefPubMedCentralGoogle Scholar
  127. Vukusic, P., Sambles, J. R., & Lawrence, C. R. (2000). Structural colour: Colour mixing in wing scales of a butterfly. Nature, 404, 457.CrossRefPubMedGoogle Scholar
  128. Vukusic, P., Hallam, B., & Noyes, J. (2007). Brilliant whiteness in ultrathin beetle scales. Science, 315, 348.CrossRefPubMedGoogle Scholar
  129. Whitney, H. M., Kolle, M., Andrew, P., Chittka, L., Steiner, U., & Glover, B. J. (2009). Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science, 323, 130–133.CrossRefPubMedGoogle Scholar
  130. Wickham, S., Large, M. C. J., Poladian, L., & Jermiin, L. S. (2006). Exaggeration and suppression of iridescence: The evolution of two-dimensional butterfly structural colours. Journal of The Royal Society Interface, 3, 99–109.Google Scholar
  131. Wiersma, D. S. (2013). Disordered photonics. Nature Photonics, 7, 188–196.CrossRefGoogle Scholar
  132. Wikimedia Commons, Kuribo (2008). Satyr Tragopan, captive, Osaka. Satyr Tragopan Osaka.jpg, licensed under CC BY-SA 3.0.Google Scholar
  133. Wikimedia Commons, & William H. Majoros (2010). Eastern Bluebird. 7Z1E5531.jpg, licensed under CC BY-SA 3.0.Google Scholar
  134. Wilts, B. D., Michielsen, K., De Raedt, H., & Stavenga, D. G. (2012a). Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales. Interface Focus, 2, 681–687.CrossRefPubMedGoogle Scholar
  135. Wilts, B. D., Michielsen, K., Kuipers, J., De Raedt, H., & Stavenga, D. G. (2012b). Brilliant camouflage: Photonic crystals in the diamond weevil, Entimus imperialis. Proceedings of the Royal Society B, 279, 2524–2530.Google Scholar
  136. Wilts, B. D., Michielsen, K., De Raedt, H., & Stavenga, D. G. (2014a). Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling. Proceedings of the National Academy of Sciences of the United States of America, 111, 4363–4368.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Wilts, B. D., Whitney, H. M., Glover, B. J., Steiner, U., & Vignolini, S. (2014b). Natural helicoidal structures: Morphology, self-assembly and optical properties. Materials Today, 1, 177–185.CrossRefGoogle Scholar
  138. Wilts, B. D., Sheng, X., Holler, M., Diaz, A., Guizar-Sicairos, M., Raabe, J., Hoppe, R., Liu, S. H., Langford, R., Onelli, O. D., et al. (2017a). Evolutionary-optimized photonic network structure in white beetle wing scales. Advanced Materials, 1702057.Google Scholar
  139. Wilts, B. D., Zubiri, B. A., Klatt, M. A., Butz, B., Fischer, M. G., Kelly, S. T., Spiecker, E., Steiner, E., & Schröder-Turk, G. E. (2017b). Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development. Science Advances, 3, e1603119.CrossRefPubMedPubMedCentralGoogle Scholar
  140. Wolf, E. (2007). Introduction to the theory of coherence and polarization of light. Cambridge: Cambridge University Press.Google Scholar
  141. Yablonovitch, E. (1993). Photonic band-gap structures. Journal of the Optical Society of America B: Optical Physics, 10, 283–295.CrossRefGoogle Scholar
  142. Yong, J., Chen, F., Yang, Q., Du, G., Shan, C., Bian, H., Farooq, U., & Hou, X. (2015). Bioinspired transparent underwater superoleophobic and anti-oil surfaces. Journal of Materials Chemistry, A3, 9379–9384.CrossRefGoogle Scholar
  143. Yoshioka, S., & Kinoshita, S. (2007). Polarization-sensitive color mixing in the wing of the Madagascan sunset moth. Optics Express, 15, 2691–2701.CrossRefPubMedGoogle Scholar
  144. Yoshioka, S., & Kinoshita, S. (2009). Optical effects of highly curved multilayer structure found in the scale of structurally colored moth. Proceedings of SPIE, 7401, 740105.  https://doi.org/10.1117/12.824861.CrossRefGoogle Scholar
  145. Yun, W.-B., Kirz, J., & Sayre, D. (1987). Observation of the soft X-ray diffraction pattern of a single diatom. Acta Crystallographica. Section A, 43, 131–133.Google Scholar
  146. Zi, J., Yu, X., Li, Y., Hu, X., Xu, C., Wang, X., Liu, X., & Fu, R. (2003). Coloration strategies in peacock feathers. Proceedings of the National Academy of Sciences of the United States of America, 100, 12576–12578.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Villads Egede Johansen
    • 1
  • Olimpia Domitilla Onelli
    • 1
  • Lisa Maria Steiner
    • 1
  • Silvia Vignolini
    • 1
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations