Arthropod Corneal Nanocoatings: Diversity, Mechanisms, and Functions

  • Mikhail Kryuchkov
  • Artem Blagodatski
  • Vsevolod Cherepanov
  • Vladimir L. KatanaevEmail author
Part of the Biologically-Inspired Systems book series (BISY, volume 10)


Corneal surfaces of terrestrial insects and other arthropods are covered with elaborate nanocoatings. Initially described as moth-eye nanostructures – paraboloid nipple-like evaginations regularly assembled on the lenses of some Lepidopterans – they were in recent years discovered to be omnipresent across insect lineages. In addition to the nipple-type morphology, corneal nanocoatings can be built as ridge-, maze-, or dimple-type nanopatterns, with various transitions among these morphologies seen in different species or even within the same specimen. Varying in the height of dozens to hundreds nanometers, and in the diameter being thinner than the wavelength of the visible light, these nanostructures provide the antireflective function to the surfaces they coat. Additional functionalities, such as water-repelling, antifouling, or antibacterial, could also be attributed to them. Turing reaction-diffusion and the block copolymerization mechanisms of molecular self-assembly have been proposed to guide the formation of corneal nanostructures during insect eye development. Both mechanisms envision interactions of two types of molecular agents with different diffusion and/or hydrophobicity properties as the underlying principle of building of the nanostructures. Using model insect organisms, the molecular identities of these agents can be revealed. These studies will elucidate the mechanism of formation and diversity of the corneal nanostructures in arthropods. Further, they will lay the ground for bioengineering, in vivo and in vitro, of novel nanocoatings with desired properties.


  1. Aghaeipour, M., Anttu, N., Nylund, G., Samuelson, L., Lehmann, S., & Pistol, M.-E. (2014). Tunable absorption resonances in the ultraviolet for InP nanowire arrays. Optics Express, 22(23), 29204–29212.CrossRefPubMedGoogle Scholar
  2. Anderson, M. S., & Gaimari, S. D. (2003). Raman-atomic force microscopy of the ommatidial surfaces of dipteran compound eyes. Journal of Structural Biology, 142(3), 364–368.CrossRefPubMedGoogle Scholar
  3. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R., & Full, R. J. (2000). Adhesive force of a single gecko foot-hair. Nature, 405(6787), 681–685.CrossRefPubMedGoogle Scholar
  4. Bernhard, C. G., & Miller, W. H. (1962). A corneal nipple pattern in insect compound eyes. Acta Physiologica Scandinavica, 56(3–4), 385–386.CrossRefPubMedGoogle Scholar
  5. Bernhard, C.G., Miller, W.H., & Møller, A.R. (1965). The insect corneal nipple array: A biological, broad-band impedance transformer that acts as an antireflection coating. Zeitschrift für vergleichende Physiologie, 67(1), 1–25.Google Scholar
  6. Bhanot, P., Brink, M., Samos, C.H., Hsieh, J.C., Wang, Y., Macke, J.P., Andrew. D., Nathans, J., & Nusse, R. (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382(6588), 225–230.Google Scholar
  7. Bernhard, C. G., Gemne, G., & Sällström, J. (1970). Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Journal of Comparative Physiology. A, 67(1), 1–25.Google Scholar
  8. Bixler, G. D., & Bhushan, B. (2014). Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow. Nanoscale, 6(1), 76–96.CrossRefPubMedGoogle Scholar
  9. Bixler, G. D., Theiss, A., Bhushan, B., & Lee, S. C. (2014). Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. Journal of Colloid and Interface Science, 419, 114–133.CrossRefPubMedGoogle Scholar
  10. Blagodatski, A., Kryuchkov, M., Sergeev, A., Klimov, A. A., Shcherbakov, M. R., Enin, G. A., & Katanaev, V. L. (2014). Under- and over-water halves of Gyrinidae beetle eyes harbor different corneal nanocoatings providing adaptation to the water and air environments. Scientific Reports, 4, 6004.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Blagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y., & Katanaev, V. L. (2015). Diverse set of Turing nanopatterns coat corneae across insect lineages. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10750–10755.CrossRefPubMedCentralPubMedGoogle Scholar
  12. Brongersma, M. L., Cui, Y., & Fan, S. H. (2014). Light management for photovoltaics using high-index nanostructures. Nature Materials, 13(5), 451–460.CrossRefPubMedGoogle Scholar
  13. Chen, H., & Chakrabarti, A. (1998). Morphology of thin block copolymer films on chemically patterned substrates. The Journal of Chemical Physics, 108(16), 6897–6905.CrossRefGoogle Scholar
  14. Chipman, A. D., Ferrier, D. E., Brena, C., Qu, J., Hughes, D. S., Schroder, R., Torres-Oliva, M., Znassi, N., Jiang, H., Almeida, F. C., et al. (2014). The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biology, 12(11), e1002005.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Daglar, B., Khudiyev, T., Demirel, G. B., Buyukserin, F., & Bayindir, M. (2013). Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing. Journal of Materials Chemistry C, 1(47), 7842–7848.CrossRefGoogle Scholar
  16. Daly, H.V. (1970). The insects. Structure and function. R. F. Chapman. Elsevier, New York, 1969. Science 168(3935), 1082.Google Scholar
  17. Deinega, A., Valuev, I., Potapkin, B., & Lozovik, Y. (2011). Minimizing light reflection from dielectric textured surfaces. Journal of the Optical Society of America. A, 28(5), 770–777.CrossRefGoogle Scholar
  18. Du, Q. G., Kam, C. H., Demir, H. V., Yu, H. Y., & Sun, X. W. (2011). Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications. Optics Letters, 36(10), 1884–1886.CrossRefPubMedGoogle Scholar
  19. Farrell, A. R., Fitzgerald, G. T., Borah, D., Holmes, D. J., & Morris, A. M. (2009). Chemical interactions and their role in the microphase separation of block copolymer thin films. International Journal of Molecular Sciences, 10(9), 3671–3712.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Fasolka, M. J., Harris, D. J., Mayes, A. M., Yoon, M., & Mochrie, S. G. J. (1997). Observed substrate topography-mediated lateral patterning of diblock copolymer films. Physical Review Letters, 79(16), 3018–3021.CrossRefGoogle Scholar
  21. Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L. (2008). Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 24(8), 4114–4119.CrossRefPubMedGoogle Scholar
  22. Fröhlich, A. (2001). A scanning electron-microscopic study of apical contacts in the eye during postembryonic development of Drosophila melanogaster. Cell and Tissue Research, 303(1), 117–128.CrossRefPubMedGoogle Scholar
  23. Gao, X., Yan, X., Yao, X., Xu, L., Zhang, K., Zhang, J., Yang, B., & Jiang, L. (2007). The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials, 19(17), 2213–2217.CrossRefGoogle Scholar
  24. Gemne, G. (1966). Ultrastructural ontogenesis of cornea and corneal nipples in compound eye of insects. Acta Physiologica Scandinavica, 66(4), 511–512.CrossRefPubMedGoogle Scholar
  25. Gemne, G. (1971). Ontogenesis of corneal surface ultrastructure in nocturnal Lepidoptera. Philosophical Transactions of the Royal Society B, 262(843), 343–363.CrossRefGoogle Scholar
  26. Gorb, S., & Speck, T. (2017). Biological and biomimetic materials and surfaces. Beilstein Journal of Nanotechnology, 8, 403–407.CrossRefPubMedCentralPubMedGoogle Scholar
  27. Green, D. W., Watson, G. S., Watson, J., & Abraham, S. J. K. (2012). New biomimetic directions in regenerative ophthalmology. Advance Healthcare Maternité, 1(2), 140–148.CrossRefGoogle Scholar
  28. Hamley, I. W. (1998). The physics of block copolymers. Oxford: Oxford University Press.Google Scholar
  29. Hamley, I. W., Connell, S. D., Collins, S., Fundin, J., & Yang, Z. (2004). In situ AFM imaging of block copolymer micelles adsorbed on a solid substrate. Abstracts of Papers of the American Chemical Society, 227, 551–551.Google Scholar
  30. Han, L., & Zhao, H. P. (2014). Surface antireflection properties of GaN nanostructures with various effective refractive index profiles. Optics Express, 22(26), 31907–31916.CrossRefPubMedGoogle Scholar
  31. Hancock, M. J., Sekeroglu, K., & Demirel, M. C. (2012). Bioinspired directional surfaces for adhesion, wetting, and transport. Advanced Functional Materials, 22(11), 2223–2234.CrossRefPubMedCentralPubMedGoogle Scholar
  32. Helbig, R., Nickerl, J., Neinhuis, C., & Werner, C. (2011). Smart skin patterns protect springtails. PLoS One, 6(9), e25105.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Hensel, R., Neinhuis, C., & Werner, C. (2016). The springtail cuticle as a blueprint for omniphobic surfaces. Chemical Society Reviews, 45(2), 323–341.CrossRefPubMedGoogle Scholar
  34. Ivanova, E. P., Hasan, J., Webb, H. K., Truong, V. K., Watson, G. S., Watson, J. A., Baulin, V. A., Pogodin, S., Wang, J. Y., Tobin, M. J., et al. (2012). Natural bactericidal surfaces: Mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small, 8(16), 2489–2494.CrossRefPubMedGoogle Scholar
  35. Ji, S., Park, J., & Lim, H. (2012). Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: Flat antireflection and color tuning. Nanoscale, 4(15), 4603–4610.CrossRefPubMedGoogle Scholar
  36. Katanaev, V. L., & Kryuchkov, M. V. (2011). The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. Biochemistry (Moscow), 76(13), 1556–1581.CrossRefGoogle Scholar
  37. Kim, S. O., Solak, H. H., Stoykovich, M. P., Ferrier, N. J., de Pablo, J. J., & Nealey, P. F. (2003). Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 424(6947), 411–414.CrossRefPubMedGoogle Scholar
  38. Kondo, S., & Miura, T. (2010). Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329(5999), 1616–1620.CrossRefPubMedGoogle Scholar
  39. Kryuchkov, M., Katanaev, V. L., Enin, G. A., Sergeev, A., Timchenko, A. A., & Serdyuk, I. N. (2011). Analysis of micro- and nano-structures of the corneal surface of Drosophila and its mutants by atomic force microscopy and optical diffraction. PLoS One, 6(7), e22237.CrossRefPubMedCentralPubMedGoogle Scholar
  40. Kryuchkov, M., Lehmann, J., Schaab, J., Cherepanov, V., Blagodatski, A., Fiebig, M., & Katanaev, V. L. (2017a). Alternative moth-eye nanostructures: Antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors. JNanoBiotechnology, 15(1), 61.CrossRefGoogle Scholar
  41. Kryuchkov, M., Lehmann, J., Schaab, J., Fiebig, M., & Katanaev, V. L. (2017b). Antireflective nanocoatings for UV-sensation: The case of predatory owlfly insects. Journal of Nanobiotechnology, 15(1), 52.CrossRefPubMedCentralPubMedGoogle Scholar
  42. Lavanya Devi, A. L., Nongthomba, U., & Bobji, M. S. (2016). Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy. Journal of the Mechanical Behavior of Biomedical Materials, 53, 161–173.CrossRefPubMedGoogle Scholar
  43. Lee, K. C., & Erb, U. (2013). Grain boundaries and coincidence site lattices in the corneal nanonipple structure of the mourning cloak butterfly. Beilstein Journal of Nanotechnology, 4, 292–299.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Lee, K. C., & Erb, U. (2015). Remarkable crystal and defect structures in butterfly eye nano-nipple arrays. Arthropod Structure & Development, 44(6), 587–594.CrossRefGoogle Scholar
  45. Lee, K. C., Yu, Q., & Erb, U. (2016). Mesostructure of ordered corneal nano-nipple arrays: The role of 5–7 coordination defects. Scientific Reports, 6, 28342.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Leem, J. W., Yeh, Y., & Yu, J. S. (2012). Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Optics Express, 20(4), 4056–4066.CrossRefPubMedGoogle Scholar
  47. Lin, C., Martínez, L. J., & Povinelli, M. L. (2013). Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells. Optics Express, 21(S5), A872–A882.CrossRefPubMedGoogle Scholar
  48. Lin, D., Fan, P., Hasman, E., & Brongersma, M. L. (2014). Dielectric gradient metasurface optical elements. Science, 345(6194), 298.CrossRefPubMedGoogle Scholar
  49. Liu, T. L., & Kim, C. J. (2014). Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids. Science, 346(6213), 1096–1100.CrossRefPubMedGoogle Scholar
  50. Liu, H., Xu, J., Li, Y., & Li, Y. (2010). Aggregate nanostructures of organic molecular materials. Accounts of Chemical Research, 43(12), 1496–1508.CrossRefPubMedGoogle Scholar
  51. Martins, E. R., Li, J., Liu, Y., Depauw, V., Chen, Z., Zhou, J., & Krauss, T. F. (2013). Deterministic quasi-random nanostructures for photon control. Nature Communications, 4, 2665.CrossRefPubMedGoogle Scholar
  52. Meyer-Rochow, V. B. (1978). Retina and dioptric apparatus of the dung beetle Euoniticellus africanus. Journal of Insect Physiology, 24(2), 165–179.CrossRefGoogle Scholar
  53. Meyer-Rochow, V. B., & Stringer, I. A. N. (1993). A system of regular ridges instead of nipples on a compound eye that has to operate near the diffraction limit. Vision Research, 33(18), 2645–2647.CrossRefPubMedGoogle Scholar
  54. Miller, W. H. (1979). Ocular optical filtering. In H. Autrum (Ed.), Handbook of sensory physiology (Vol. VII/6A, pp. 69–143). Berlin/Heidelberg/New York: Springer.Google Scholar
  55. Minami, R., Sato, C., Yamahama, Y., Kubo, H., Hariyama, T., & Kimura, K.-i. (2016). An RNAi screen for genes involved in nanoscale protrusion formation on corneal lens in Drosophila melanogaster. Zoological Science, 33(6), 583–591.CrossRefPubMedGoogle Scholar
  56. Mishra, M., & Meyer-Rochow, V. B. (2006). Eye ultrastructure in the pollen-feeding beetle, Xanthochroa luteipennis (Coleoptera: Cucujiformia: Oedemeridae). Journal of Electron Microscopy, 55(6), 289–300.CrossRefPubMedGoogle Scholar
  57. Miura, T., & Maini, P. K. (2004). Periodic pattern formation in reactiondiffusion systems: An introduction for numerical simulation. Anatomical Science International, 79(3), 112–123.CrossRefPubMedGoogle Scholar
  58. Nakamasu, A., Takahashi, G., Kanbe, A., & Kondo, S. (2009). Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8429–8434.CrossRefPubMedCentralPubMedGoogle Scholar
  59. Nickerl, J., Tsurkan, M., Hensel, R., Neinhuis, C., & Werner, C. (2014). The multi-layered protective cuticle of Collembola: A chemical analysis. Journal of The Royal Society Interface, 11(99), 20140619.CrossRefPubMedCentralGoogle Scholar
  60. Oskooi, A., Favuzzi, P. A., Tanaka, Y., Shigeta, H., Kawakami, Y., & Noda, S. (2012). Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics. Applied Physics Letters, 100(18), 181110.CrossRefGoogle Scholar
  61. Peisker, H., & Gorb, S. N. (2010). Always on the bright side of life: Anti-adhesive properties of insect ommatidia grating. The Journal of Experimental Biology, 213(20), 3457–3462.CrossRefPubMedGoogle Scholar
  62. Pogodin, S., Hasan, J., Baulin, V. A., Webb, H. K., Truong, V. K., Phong Nguyen, T. H., Boshkovikj, V., Fluke, C. J., Watson, G. S., Watson, J. A., et al. (2013). Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophysical Journal, 104(4), 835–840.CrossRefPubMedCentralPubMedGoogle Scholar
  63. Pratesi, F., Burresi, M., Riboli, F., Vynck, K., & Wiersma, D. S. (2013). Disordered photonic structures for light harvesting in solar cells. Optics Express, 21(S3), A460–A468.CrossRefPubMedGoogle Scholar
  64. Raspopovic, J., Marcon, L., Russo, L., & Sharpe, J. (2014). Digit patterning is controlled by a bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science, 345(6196), 566–570.CrossRefPubMedGoogle Scholar
  65. Raut, H. K., Ganesh, V. A., Nair, A. S., & Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy Environmental Sciences, 4(10), 3779–3804.CrossRefGoogle Scholar
  66. Schuster, C. S., Morawiec, S., Mendes, M. J., Patrini, M., Martins, E. R., Lewis, L., Crupi, I., & Krauss, T. F. (2015). Plasmonic and diffractive nanostructures for light trapping─an experimental comparison. Optica, 2(3), 194–200.CrossRefGoogle Scholar
  67. Sergeev, A., Timchenko, A. A., Kryuchkov, M., Blagodatski, A., Enin, G. A., & Katanaev, V. L. (2015). Origin of order in bionanostructures. RSC Advances, 5(78), 63521–63527.CrossRefGoogle Scholar
  68. Sick, S., Reinker, S., Timmer, J., & Schlake, T. (2006). WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science, 314(5804), 1447–1450.CrossRefPubMedGoogle Scholar
  69. Siddique, R. H., Gomard, G., & Holscher, H. (2015). The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly. Nature Communications, 6, 6909.CrossRefPubMedGoogle Scholar
  70. Son, J., Verma, L. K., Danner, A. J., Bhatia, C. S., & Yang, H. (2011). Enhancement of optical transmission with random nanohole structures. Optics Express, 19(S1), A35–A40.CrossRefPubMedGoogle Scholar
  71. Stavenga, D. G. (2006). Invertebrate superposition eyes-structures that behave like metamaterial with negative refractive index. Journal of the European Optical Society-Rapid Publications, 1, 06010.CrossRefGoogle Scholar
  72. Stavenga, D. G., Foletti, S., Palasantzas, G., & Arikawa, K. (2006). Light on the moth-eye corneal nipple array of butterflies. Proceedings of the Royal Society B, 273(1587), 661–667.CrossRefPubMedGoogle Scholar
  73. Stavroulakis, P. I., Boden, S. A., Johnson, T., & Bagnall, D. M. (2013). Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays. Optics Express, 21(1), 1–11.CrossRefPubMedGoogle Scholar
  74. Sun, T. L., Feng, L., Gao, X. F., & Jiang, L. (2005). Bioinspired surfaces with special wettability. Accounts of Chemical Research, 38(8), 644–652.CrossRefPubMedGoogle Scholar
  75. Sun, M., Liang, A., Watson, G. S., Watson, J. A., Zheng, Y., Ju, J., & Jiang, L. (2012). Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings. PLoS One, 7(4), e35056.CrossRefPubMedCentralPubMedGoogle Scholar
  76. Tanaka, G., Parker, A. R., Siveter, D. J., Maeda, H., & Furutani, M. (2009). An exceptionally well-preserved Eocene dolichopodid fly eye: Function and evolutionary significance. Proceedings of the Royal Society B, 276(1659), 1015–1019.CrossRefPubMedGoogle Scholar
  77. Toh, Y., & Okamura, J.-y. (2007). Morphological and optical properties of the corneal lens and retinal structure in the posterior large stemma of the tiger beetle larva. Vision Research, 47(13), 1756–1768.CrossRefPubMedGoogle Scholar
  78. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237(641), 37–72.CrossRefGoogle Scholar
  79. van Lare, M. C., & Polman, A. (2015). Optimized scattering power spectral density of photovoltaic light-trapping patterns. ACS Photonics, 2(7), 822–831.CrossRefGoogle Scholar
  80. Varela, F. G., & Wiitanen, W. (1970). The optics of the compound eye of the honeybee (Apis mellifera). The Journal of General Physiology, 55(3), 336–358.CrossRefPubMedCentralPubMedGoogle Scholar
  81. Vigneron, J. P., Rassart, M., Vertesy, Z., Kertesz, K., Sarrazin, M. L., Biro, L. P., Ertz, D., & Lousse, V. (2005). Optical structure and function of the white filamentary hair covering the edelweiss bracts. Physical Review E, 71(1), 011906.CrossRefGoogle Scholar
  82. Watson, G. S., Watson, J. A., & Cribb, B. W. (2017). Diversity of cuticular micro- and nanostructures on insects: Properties, functions, and potential applications. Annual Review of Entomology, 62(1), 185–205.CrossRefPubMedGoogle Scholar
  83. Wiersma, D. S. (2013). Disordered photonics. Nature Photonics, 7(3), 188–196.CrossRefGoogle Scholar
  84. Wilson, S. J., & Hutley, M. C. (1982). The optical properties of ‘moth eye’ antireflection surfaces. Optica Acta, 29(7), 993–1009.CrossRefGoogle Scholar
  85. Wisdom, K. M., Watson, J. A., Qu, X., Liu, F., Watson, G. S., & Chen, C.-H. (2013). Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 7992–7997.CrossRefPubMedCentralPubMedGoogle Scholar
  86. Wood, L. (2017). Global nano coating market (2016–2022): Increasing technological advancement is a key driver ─ research and markets.
  87. Wu, W., Huang, J. Y., Jia, S. J., Kowalewski, T., Matyjaszewski, K., Pakula, T., Gitsas, A., & Floudas, G. (2005). Self-assembly of pODMA-b-ptBA-b-pODMA triblock copolymers in bulk and on surfaces. A quantitative SAXS/AFM comparison. Langmuir, 21(21), 9721–9727.CrossRefPubMedGoogle Scholar
  88. Xiao, S. G., Yang, X. M., Edwards, E. W., La, Y. H., & Nealey, P. F. (2005). Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays. Nanotechnology, 16(7), 324–329.CrossRefGoogle Scholar
  89. Xin, Y., Jin, H., Feng, G., Hongjie, L., Laixi, S., Lianghong, Y., Xiaodong, J., Weidong, W., & Wanguo, Z. (2016). High power laser antireflection subwavelength grating on fused silica by colloidal lithography. Journal of Physics D: Applied Physics, 49(26), 265104.CrossRefGoogle Scholar
  90. Xue, F., Liu, J., Guo, L., Zhang, L., & Li, Q. (2015). Theoretical study on the bactericidal nature of nanopatterned surfaces. Journal of Theoretical Biology, 385, 1–7.CrossRefPubMedGoogle Scholar
  91. Yoon, J. W., Lee, K. J., & Magnusson, R. (2015). Ultra-sparse dielectric nanowire grids as wideband reflectors and polarizers. Optics Express, 23(22), 28849–28856.CrossRefPubMedGoogle Scholar
  92. Yu, Y. F., Zhu, A. Y., Paniagua-Domínguez, R., Fu, Y. H., Luk’yanchuk, B., & Kuznetsov, A. I. (2015). High-transmission dielectric metasurface with 2p phase control at visible wavelengths. Laser & Photonics Reviews, 9(4), 412–418.CrossRefGoogle Scholar
  93. Zhou, L., Dong, X., Zhou, Y., Su, W., Chen, X., Zhu, Y., & Shen, S. (2015). Multiscale micro–nano nested structures: Engineered surface morphology for efficient light escaping in organic light-emitting diodes. ACS Applied Materials & Interfaces, 7(48), 26989–26998.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Mikhail Kryuchkov
    • 1
  • Artem Blagodatski
    • 2
    • 1
  • Vsevolod Cherepanov
    • 2
  • Vladimir L. Katanaev
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacology and ToxicologyUniversity of LausanneLausanneSwitzerland
  2. 2.School of BiomedicineFar Eastern Federal UniversityVladivostokRussian Federation

Personalised recommendations