Cuticle as Functional Interface in Insect Infrared Receptors

  • Anke Schmitz
  • Helmut SchmitzEmail author
Part of the Biologically-Inspired Systems book series (BISY, volume 10)


Pyrophilous (‘fire-loving‘) insects depend on forest fires for their reproduction. Therefore, such insects approach ongoing fires and invade the freshly burnt area immediately. In beetles members of two genera of jewel beetles (Buprestidae) and one species of the genus Acanthocnemus (Acanthocnemidae) show a highly pyrophilous behaviour. Additionally, pyrophilous behaviour has also been described for four species of the large flat bug genus Aradus (Aradidae). For the long-range navigation towards a fire as well as for the short-range orientation on a freshly burnt area these insects have developed special sensors for the smell of burning and for infrared (IR) radiation. Whereas the olfactory receptors for smoke are located on the antennae, the IR receptors are housed in extraantennal sensory organs. Although the community of pyrophilous insects is rather small, no ‘standard’ IR receptors exist. Receptors are located on the thorax or on the abdomen and show a stunning diversity with respect to structure and function. Two functional principles and three fundamentally different designs have been described. Nevertheless, in all receptors the cuticle plays an important role as interface between incoming radiation and the associated sensory cells. The cuticular apparatus of an IR receptor, therefore, has to manage effective absorption and subsequent fast transformation of photon energy into a state variable which can be perceived by the sensory cells. The chapter provides an overview about the known insect IR receptors with a focus on the impact of the cuticle in IR perception.



We are indebted to E. S. Schneider (Graz, Austria) for preparing Figs. 1.3c and e. eye of science, Meckes & Ottawa GbR, Reutlingen, Germany, generously provided Fig. 1.4b.


  1. Alonso-Zarazaga, M., Sánchez-Ruiz, M., & Sánchez-Ruiz, A. (2003). Una nueva familia de Coleoptera para España: Acanthocnemidae. Boletín de la Sociedad Entomológica Aragonesa, 32, 179–180.Google Scholar
  2. Apel, K.-H. (1991). Die Kiefernprachtkäfer. Eberswalde: Forschungsanstalt für Forst- und Holzwirtschaft.Google Scholar
  3. Baena, M., & Torres, J. L. (2013). Notes on the biology and Iberian distribution of Aradus flavicornis (Dalmann, 1823) (Hemiptera, Heteroptera, Aradidae). Boletin de la Asociacion Espanola de Entomologia, 37, 277–284.Google Scholar
  4. Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta, 1767, 1073–1101.CrossRefPubMedGoogle Scholar
  5. Bellamy, C. L. (2008). A world catalogue and bibliography of the jewel beetles (Coleoptera: Buprestoidea). Volume 3. Buprestinae: Pterobothrini through Agrilinae: Rhaeboscelina. Sofia/Moscow: Pensoft.Google Scholar
  6. Bond, W. J., & Keeley, J. E. (2005). Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 20, 387–394.CrossRefGoogle Scholar
  7. Bowmaker, J., & Hunt, D. (2006). Evolution of vertebrate visual pigments. Current Biology, 16, R484–R487.CrossRefPubMedGoogle Scholar
  8. Budzier, H., & Gerlach, G. (2011). Thermal infrared sensors. Chichester: Wiley.CrossRefGoogle Scholar
  9. Champion, G. C. (1922). The geographical distribution and synonomy of the dasytid-beetle Acanthocnemus nigricans hope (= ciliatus Perris). Entomologist’s Monthly Magazine, 58, 77–79.Google Scholar
  10. Chapman, R. F. (1998). The insects: Structure and function. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  11. D’Amico, A., Di Natale, C., Castro, F. L., Iarossi, S., Catini, A., & Martinelli, E. (2009). Volatile compounds detection by IR acousto-optic detectors. In J. Byrnes (Ed.), Unexploded ordnance detection and mitigation (pp. 21–59). Dordrecht: Springer.CrossRefGoogle Scholar
  12. Deyrup, M., & Mosley, J. G. (2004). Natural history of the flat bug Aradus glacilicornis in fire-killed pines (Heteroptera: Aradidae). Florida Entomologist, 87, 79–81.CrossRefGoogle Scholar
  13. Douglas, R. H., Partridge, J. C., Dulai, K., Hunt, D., Mullineaux, C. W., Tauber, A. Y., & Hynninen, P. H. (1998). Dragon fish see using chlorophyll. Nature, 393, 423–424.CrossRefGoogle Scholar
  14. Evans, W. G. (1964). Infra-red receptors in Melanophila acuminata DeGeer. Nature, 202, 211–211.CrossRefPubMedGoogle Scholar
  15. Evans, W. G. (1966a). Morphology of the infrared sense organ of Melanophila acuminata (Buprestidae: Coleoptera). Annals of the Entomological Society of America, 59, 873–877.CrossRefGoogle Scholar
  16. Evans, W. G. (1966b). Perception of infrared radiation from forest fires by Melanophila acuminata de Geer (Buprestidae, Coleoptera). Ecology, 47, 1061–1065.CrossRefGoogle Scholar
  17. Field, L. H., & Matheson, T. (1998). Chordotonal organs of insects. In P. D. Evans (Ed.), Advances in insect physiology (pp. 1–228). San Diego: Academic Press.Google Scholar
  18. French, A. S. (1992). Mechanotransduction. Annual Review of Physiology, 54, 135–152.CrossRefPubMedGoogle Scholar
  19. Froeschner, R. C. (1988). Family Aradidae Spinola 1837 (=Dysodiidae Reuter, 1912; Meziridae Oshanin, 1908), the flat bugs. In T. J. Henry & R. C. Froeschner (Eds.), Catalog of the Heteroptera, or true bugs, of Canada and the United States (pp. 29–46). New York: E. J. Brill Co..Google Scholar
  20. Gingl, E., & Tichy, H. (2001). Infrared sensitivity of thermoreceptors. Journal of Comparative Physiology. A, 187, 467–475.CrossRefGoogle Scholar
  21. Göpfert, M. C., & Robert, D. (2001). Active auditory mechanics in mosquitoes. Proceedings of the Royal Society of London B, 268, 333–339.CrossRefGoogle Scholar
  22. Göpfert, M. C., & Robert, D. (2003). Motion generation by Drosophila mechanosensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 100, 5514–5519.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Hawkeswood, T. J. (2007). Review of the biology of the genus Merimna Saunders, 1868 (Coleoptera: Buprestidae). Calodema, 9, 12–13.Google Scholar
  24. Hawkeswood, T. J., & Peterson, M. (1982). A review of the larval host records for Australian jewel beetels (Coleoptera: Buprestidae). The Victorian Naturalist (Blackburn), 99, 240–251.Google Scholar
  25. Hazel, J., Fuchigami, N., Gorbunov, V., Schmitz, H., Stone, M., & Tsukruk, V. V. (2001). Ultramicrostructure and microthermomechanics of biological IR detectors: Materials properties from a biomimetic perspective. Biomacromolecules, 2, 304–312.CrossRefPubMedGoogle Scholar
  26. Heiss, E., & Pericart, J. (2007). Hemiptères Aradidae Piesmatidae et Dipsocoromorphes Euro-mediterranéens. Paris: Fédération Francaise des Sociétés de Sciences Naturelles.Google Scholar
  27. Herzberg, H., & Huber, K.-P. (1950). Molecular spectra and molecular structure. I. Spectra of diatomic molecules. New York: Van Nostrand and Reinhold.Google Scholar
  28. Hesse, M., Meier, H., & Zeeh, B. (1995). Spektroskopische Methoden in der organischen Chemie. Stuttgart/New York: Georg Thieme Verlag.Google Scholar
  29. Horion, A. (1955). Faunistik der mitteleuropäischen Käfer. 4, Sternoxia (Buprestidæ), Fossipedes, Macrodactylia, Brachymera. München.Google Scholar
  30. Johansson, T., Hjältén, J., Stenbacka, F., & Dynesius, M. (2010). Responses of eight boreal flat bug (Heteroptera: Aradidae) species to clear-cutting and forest fire. Journal of Insect Conservation, 14, 3–9.CrossRefGoogle Scholar
  31. Kitchin, D. R. (2009). Notes on the biology of Merimna atrata (Gory & Laporte) (Coleoptera: Buprestidae). Australian Entomologist, 36, 1–2.Google Scholar
  32. Kovalenko, Y. N. (2011). Acanthocnemidae (Coleoptera), a family of beetles new to Russia. Zoosystematica Rossica, 20, 71–73.Google Scholar
  33. Kreiss, E.-J., Schmitz, A., & Schmitz, H. (2005). Morphology of the prothoracic discs and associated sensilla of Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). Arthropod Structure & Development, 34, 419–428.CrossRefGoogle Scholar
  34. Kreiss, E.-J., Schmitz, H., & Gebhardt, M. (2007). Electrophysiological characterisation of the infrared organ of the Australian “Little Ash Beetle” Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). Journal of Comparative Physiology. A, 193, 729–739.CrossRefGoogle Scholar
  35. Lappalainen, H., & Simola, H. (1998). The fire-adapted flatbug Aradus laeviusculus Reuter (Heteroptera, Aradidae) rediscovered in Finland (North Karelia, Koli National Park). Entomologica Fennica, 9, 3–4.Google Scholar
  36. Liberti, G. (2009). The Dasytidae (Coleoptera) of Sardinia. Zootaxa, 2318, 339–385.Google Scholar
  37. Linsley, E. G. (1933). Some observations on the swarming of Melanophila. Pan-Pacific Entomologist, 9, 138.Google Scholar
  38. Linsley, E. G. (1943). Attraction of Melanophila beetles by fire and smoke. Journal of Economic Entomology, 36, 341–342.CrossRefGoogle Scholar
  39. Mainz, T., Schmitz, A., & Schmitz, H. (2004). Variation in number and differentiation of the abdominal infrared receptors in the Australian ‘fire-beetle’ Merimna atrata (Coleoptera, Buprestidae). Arthropod Structure & Development, 33, 419–430.CrossRefGoogle Scholar
  40. Manee, A. H. (1913). Observations on Buprestidae at Southern Pines, North Carolina. Entomological News, 24, 167–171.Google Scholar
  41. Mayor, A. (2007). Acanthocnemidae; Prionoceridae; Melyridae; Dasytidae. In I. Löbl & A. Smetana (Eds.), Catalogue of Palaearctic Coleoptera, Vol. 4. Elateroidea - Derodontoidea - Bostrichoidea - Lymexyloidea - Cleroidea - Cucujoidea (pp. 384–415). Stenstrup: Apollo Books.Google Scholar
  42. Meuthen, D., Rick, I. P., Thünken, T., & Baldauf, S. A. (2012). Visual prey detection by near-infrared cues in a fish. Naturwissenschaften, 99, 1063–1066.CrossRefPubMedGoogle Scholar
  43. Mhatre, N., & Robert, D. (2013). A tympanal insect ear exploits a critical oscillator for active amplification and tuning. Current Biology, 23, 1–6.CrossRefGoogle Scholar
  44. Michelsen, A., & Larsen, O. N. (1985). Hearing and sound. In G. A. Kerkut & L. I. Gilbert (Eds.), Comprehensive insect physiology, biochemistry, and pharmacology (pp. 495–556). New York: Pergamon Press.Google Scholar
  45. Neville, A. C. (1975). Biology of the arthropod cuticle. Berlin/Heidelberg/New York: Springer Verlag.CrossRefGoogle Scholar
  46. Poulton, E. B. (1915). The habits of the Australian buprestid “fire-beetle” Merimna atrata, (Laporte and Gory). Transactions of the Entomological Society of London, Part 1, iii–iiv.Google Scholar
  47. Ricksecker, L. E. (1885). Habits of some California beetles. Entomological America, 1, 96–98.Google Scholar
  48. Rogalski, A. (2002). Infrared detectors: An overview. Infrared Physics & Technology, 43, 187–210.CrossRefGoogle Scholar
  49. Saint-Germain, M., Drapeau, P., & Buddle, C. M. (2008). Persistence of pyrophilous insects in fire-driven boreal forests: Population dynamics in burned and unburned habitats. Diversity and Distributions, 14, 713–720.CrossRefGoogle Scholar
  50. Schmitz, H., & Bleckmann, H. (1997). Fine structure and physiology of the infrared receptor of beetles of the genus Melanophila (Coleoptera: Buprestidae). International Journal of Insect Morphology and Embryology, 26, 205–215.CrossRefGoogle Scholar
  51. Schmitz, H., & Bleckmann, H. (1998a). The photomechanic infrared receptor for the detection of forest fires in the beetle Melanophila acuminata (Coleoptera : Buprestidae). Journal of Comparative Physiology. A, 182, 647–657.CrossRefGoogle Scholar
  52. Schmitz, H., & Bleckmann, H. (1998b). The photomechanic infrared receptor for the detection of forest fires in the beetle Melanophila acuminata (Coleoptera: Buprestidae). Journal of Comparative Physiology. A, 182, 647–657.CrossRefGoogle Scholar
  53. Schmitz, H., & Bleckmann, H. (1998c). The photomechanic infrared receptor for the detection of forest fires in the buprestid beetle Melanophila acuminata. Journal of Comparative Physiology. A, 182, 647–657.CrossRefGoogle Scholar
  54. Schmitz, H., & Bousack, H. (2012). Modelling a historic oil-tank fire allows an estimation of the sensitivity of the infrared receptors in pyrophilous Melanophila beetles. PLoS One, 7, e37627.CrossRefPubMedCentralPubMedGoogle Scholar
  55. Schmitz, H., & Schmitz, A. (2002). Australian fire-beetles. Landscope, 18, 36–41.Google Scholar
  56. Schmitz, H., & Trenner, S. (2003). Electrophysiological characterization of the multipolar thermoreceptors in the “fire-beetle” Merimna atrata and comparison with the infrared sensilla of Melanophila acuminata (both Coleoptera, Buprestidae). Journal of Comparative Physiology. A, 189, 715–722.CrossRefGoogle Scholar
  57. Schmitz, H., Bleckmann, H., & Murtz, M. (1997). Infrared detection in a beetle. Nature, 386, 773–774.CrossRefGoogle Scholar
  58. Schmitz, H., Schmitz, A., & Bleckmann, H. (2000). A new type of infrared organ in the Australian “fire-beetle” Merimna atrata (Coleoptera: Buprestidae). Naturwissenschaften, 87, 542–545.CrossRefPubMedGoogle Scholar
  59. Schmitz, H., Schmitz, A., & Bleckmann, H. (2001). Morphology of a thermosensitive multipolar neuron in the infrared organ of Merimna atrata (Coleoptera, Buprestidae). Arthropod Structure & Development, 30, 99–111.CrossRefGoogle Scholar
  60. Schmitz, H., Schmitz, A., Trenner, S., & Bleckmann, H. (2002). A new type of insect infrared organ of low thermal mass. Naturwissenschaften, 89, 226–229.CrossRefPubMedGoogle Scholar
  61. Schmitz, A., Sehrbrock, A., & Schmitz, H. (2007). The analysis of the mechanosensory origin of the infrared sensilla in Melanophila acuminata (Coeloptera; Buprestidae) adduces new insight into the transduction mechanism. Arthropod Structure & Development, 36, 291–303.CrossRefGoogle Scholar
  62. Schmitz, A., Gebhardt, M., & Schmitz, H. (2008). Microfluidic photomechanic infrared receptors in a pyrophilous flat bug. Naturwissenschaften, 95, 455–460.CrossRefPubMedGoogle Scholar
  63. Schmitz, A., Schatzel, H., & Schmitz, H. (2010). Distribution and functional morphology of photomechanic infrared sensilla in flat bugs of the genus Aradus (Heteroptera, Aradidae). Arthropod Structure & Development, 39, 17–25.CrossRefGoogle Scholar
  64. Schmitz, A., Schneider, E. S., & Schmitz, H. (2015). Behaviour of the Australian ‘fire-beetle’ Merimna atrata (Coleoptera: Buprestidae) on burnt areas after bushfires. Records of the Western Australian Museum, 30, 1–11.CrossRefGoogle Scholar
  65. Schneider, E. S., & Schmitz, H. (2013). Bimodal innervation of the infrared organ of Merimna atrata (Coleoptera, Buprestidae) by thermo- and mechanosensory units. Arthropod Structure & Development, 42, 135–142.CrossRefGoogle Scholar
  66. Schneider, E. S., & Schmitz, H. (2014). Thermomechanical properties of the stimulus transducing cuticle in the infrared organ of Merimna atrata (Coleoptera, Buprestidae). Journal of Morphology, 275, 991–1003.CrossRefPubMedGoogle Scholar
  67. Schneider, E. S., Schmitz, A., & Schmitz, H. (2015). Concept of an active amplification mechanism in the infrared organ of pyrophilous Melanophila beetles. Frontiers in Physiology, 6, Article 391.CrossRefPubMedGoogle Scholar
  68. Schoenlein, R., Peteanu, L., Mathies, R., & Shank, C. (1991). The first step in vision: Femtosecond isomerization of rhodopsin. Science, 254, 412–415.CrossRefPubMedGoogle Scholar
  69. Sharp, W. E. (1918). Melanophila acuminata in Berkshire. Entomologist’s Monthly Magazine, 54, 244–245.Google Scholar
  70. Shcherbakov, D., Knörzer, A., Espenhahn, S., Hilbig, R., Haas, U., & Blum, M. (2013). Sensitivity differences in fish offer near-infrared vision as an adaptable evolutionary trait. PLoS One, 8, e64429.CrossRefPubMedCentralPubMedGoogle Scholar
  71. Sloop, K. D. (1937). A revision of the North American buprestid beetles belonging to the genus Melanophila (Coleoptera, Buprestidae). Berkeley: University of California Publications in Entomology.Google Scholar
  72. Stark, K. B., Gallas, J. M., Zajac, G. W., Golab, J. T., Gidanian, S., McIntire, T., & Farmer, P. J. (2005). Effect of stacking and redox state on optical absorption spectra of melanins − Comparison of theoretical and experimental results. The Journal of Physical Chemistry. B, 109, 1970–1977.CrossRefPubMedGoogle Scholar
  73. Thurm, U., Erler, G., Gödde, J., Kastrup, H., Keil, T., Völker, W., & Vohwinkel, B. (1983). Cilia specialized for mechanoreception. Journal of Submicroscopic Cytology and Pathology, 15, 151–155.Google Scholar
  74. Valcárcel, J. P., & Piloña, F. P. (2009). NOTA BREVE/SHORT NOTE Nota adicional sobre la presencia de Acanthocnemus nigricans (Hope, 1843) en la Península Ibérica. Arquivos Entomoloxicos, 2, 21.Google Scholar
  75. Van Dyke, E. C. (1926). Buprestid swarming. Pan-Pacific Entomologist, 3, 41.Google Scholar
  76. Vondran, T., Apel, K.-H., & Schmitz, H. (1995). The infrared receptor of Melanophila acuminata De Geer (Coleoptera: Buprestidae): Ultrastructural study of a unique insect thermoreceptor and its possible descent from a hair mechanoreceptor. Tissue & Cell, 27, 645–658.CrossRefGoogle Scholar
  77. Wikars, L.-O. (1992). Skogsbränder och insekter. Entomologisk Tidskrift, 113, 1–12.Google Scholar
  78. Wikars, L.-O. (1997). Effects of forest fire and the ecology of fire-adapted insects. Uppsala: Doctor Uppsala University.Google Scholar
  79. Wyniger, D., Moretti, M., & Duelli, P. (2002). Aradus lugubris fallen, 1807 (Hemiptera, Heteroptera, Aradidae) in a chestnut forest of Southern Switzerland after a fire experiment. Mitt Schweizerische Entomologische Gesellschaft, 75, 61–64.Google Scholar
  80. Zhou, Z., Gong, Y., Yang, D., Schmitz, A., & Schmitz, H. (2016). Function modeling of the infrared organ of “little ash beetle” Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). Journal of Bionic Engineering, 13, 650–658.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut für Zoologie, Universität BonnBonnGermany

Personalised recommendations