Advertisement

Canned Foods: Principles of Thermal Processing

Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

The history of food industry is strictly correlated with a peculiar category of long-durability edible products: canned foods. Differently from other packaged foods, canned foods show several unique properties, including risks and failures, depending on the composition of edible contents, the production of metal packages and preservation techniques. Thermal processes have the basic aim of destroying microorganisms (bacteria and spore-forming life forms) in foods. The inhibition of microbial growth and the inactivation of microbial toxins are also needed. Other factors—pH, presence of fatty molecules, calcium, etc—are important. As a result, the choice of the ‘right’ thermal treatment (pasteurisation, sterilisation) and related process parameters (time, temperature) have to be considered in different ambits, including canned foods (Chen in J Food: Microbiol Saf Hyg 02(1), 2017; Chen et al. in J Sci Food Agric 93(5):981–986, 2013; Gupta and Balasubramaniam in Novel thermal and non-thermal technologies for fluid foods. Academic Press, London, Waltham, and San Diego, pp. 109–133, 2012; IciEr in Novel thermal and non-thermal technologies for fluid foods. Academic Press, London, Waltham, and San Diego, pp. 305–367, 2012; Jongyingcharoen and Ahmad in Functional foods and dietary supplements: processing effects and health benefits. Wiley, Chichester, UK, 2014; Mañas and Pagán in J Appl Microbiol 98(6):1387–1399, 2005; Rastogi in Novel thermal and non-thermal technologies for fluid foods. Academic Press, London, Waltham, and San Diego, pp. 411–432, 2012; Sahin and Sumnu in Physical properties of foods, pp. 107–155, 2006; Tiwari and Mason in Novel Thermal and non-thermal technologies for fluid foods. Academic Press, London, Waltham, and San Diego, pp. 135–165, 2012; Vasseur et al. in J Appl Microbiol 86(3):469–476, 1999). Final results are the construction of logarithmic ‘survival curves’, the definition of factors which can reduce thermal destruction of microorganisms (water activity and pH). In addition, some reflection should be made when speaking of ‘commercial sterility’ and the correlated concept of long durability for canned foods (storage at room temperature).

Keywords

Acidity Canned food Commercial sterility Decimal reduction time Mycotoxin Survival curve Thermal treatment 

Abbreviations

DT

Decimal reduction time

References

  1. AACC International (2009) Thermophilic spore counts (Total Aerobic, Flat-Sour, H2S, Non-H2S Anaerobic). Approved methods of analysis, 11th Ed. Method 42-40-01. American Association of Cereal Chemists (AACC) International, St. Paul.  https://doi.org/10.1094/aaccintmethod-42-40.01
  2. Ahmed AA, Dirar HA (2011) Effect of aeration and method of addition of glucose sugar to culture medium on growth and sporulation of some Bacillus thuringiensis isolates from Sudan soils. Gezira J Agric Sci 9:1Google Scholar
  3. André S, Zuber F, Remize F (2013) Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey. Int J Food Microbiol 165(2):134–143.  https://doi.org/10.1016/j.ijfoodmicro.2013.04.019 CrossRefGoogle Scholar
  4. Atrih A, Foster SJ (1999) The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination. Antonie Van Leeuwenhoek 75(4):299–307.  https://doi.org/10.1023/A:1001800507443 CrossRefGoogle Scholar
  5. Augusto PED, Tribst AAL, Cristianini M (2014) Thermal processes—Commercial sterility (Retort). In: Batt CA (ed) Encyclopedia of food microbiology. Academic Press, Cambridge, pp 567–576.  https://doi.org/10.1016/b978-0-12-384730-0.00405-5
  6. Ball CO, Olson FCW (1957) Sterilization in food technology. Theory, practice, and calculations. McGraw-Hill Book Company, Inc., New York, Toronto, and LondonGoogle Scholar
  7. Bennett RW, Berry MR Jr (1987) Serological reactivity and in vivo toxicity of Staphylococcus aureus enterotoxins A and D in selected canned foods. J Food Sci 52(2):416–419.  https://doi.org/10.1111/j.1365-2621.1987.tb06628.x CrossRefGoogle Scholar
  8. Blackwell JH, Cliver DO, Callis JJ, Heidelbaugh ND, Larkin EP, McKERCHER PD, Thayer DW (1985) Foodborne viruses: their importance and need for research. J Food Prot 48(8):717–723.  https://doi.org/10.4315/0362-028X-48.8.717 CrossRefGoogle Scholar
  9. Blaschek HP (1999) Clostridium. Clostridium Perfringens. Encyclopedia of food microbiology, pp 433–438.  https://doi.org/10.1006/rwfm.1999.0375
  10. Brown KL (2000) Control of bacterial spores. Brit Med Bull 56(1):158–171.  https://doi.org/10.1258/0007142001902860 CrossRefGoogle Scholar
  11. Brooks EM, Houpt CW (1975) Canning process. US Patent 3,886,296 A, 27 May 1975Google Scholar
  12. Carlin F (2011) Origin of bacterial spores contaminating foods. Food Microbiol 28(2):177–182.  https://doi.org/10.1016/j.fm.2010.07.008 CrossRefGoogle Scholar
  13. Carslaw HS, Jaeger JC (1959) Conduction of Heat in Solids. Clarendon Press, OxfordGoogle Scholar
  14. Casolari A (1996a) I batteri sporigeni e la stabilizzazione degli alimenti. In: Ottaviani F (ed) Microbiologia dei Prodotti di Origine Vegetale – Ecologia ed Analisi Microbiologica. Chiriotti Editori, PineroloGoogle Scholar
  15. Casolari A (1996b) Sterilizzazione: principi e applicazioni. In: Ottaviani F (ed) Microbiologia dei Prodotti di Origine Vegetale – Ecologia ed Analisi Microbiologica. Chiriotti Editori, PineroloGoogle Scholar
  16. Charm SE, Landau SH (1987) Thermalizer. High-temperature short-time sterilization of heat-sensitive biological materials. Ann New York Acad Sci 506(1):608–612.  https://doi.org/10.1111/j.1749-6632.1987.tb23855.x
  17. Chen Z (2017) Microbial inactivation in foods by ultrasound. J Food: Microbiol Saf Hyg 02(1):1–2.  https://doi.org/10.4172/2476-2059.1000e102 Google Scholar
  18. Chen Y, Yu LJ, Rupasinghe HV (2013) Effect of thermal and non-thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice: a mini-review. J Sci Food Agric 93(5):981–986.  https://doi.org/10.1002/jsfa.5989 CrossRefGoogle Scholar
  19. Costa R (2003) Commercial food service establishments: the principles of modern food hygiene. In: Schmidt RH, Rodrick GE (eds) Food safety handbook, pp 453–522. Wiley, Hoboken, NJ, USA.  https://doi.org/10.1002/047172159X.ch26
  20. Couvert O, Gaillard S, Savy N, Mafart P, Leguérinel I (2005) Survival curves of heated bacterial spores: effect of environmental factors on Weibull parameters. Int J Food Microbiol 101(1):73–81.  https://doi.org/10.1016/j.ijfoodmicro.2004.10.048 CrossRefGoogle Scholar
  21. Dangerfield HG (1973) Effects of enterotoxins after ingestion by humans. In: Proceedings of the 73rd annual meeting of the American society for microbiology, vol 6, Miami BeachGoogle Scholar
  22. Da Silva N, Taniwaki M, Junqueira V, De Arruda Silveira N, Da Silva Do Nascimento M, Gomes R (2013) Microbiological examination methods of food and water: a laboratory manual. CRC Press/Balkema, Taylor & Francis Group, pp 311–333.  https://doi.org/10.1201/b13740-24
  23. Dotzauer C, Ehrmann MA, Vogel RF (2002) Occurrence and detection of thermoanaerobacterium and thermoanaerobacter in canned food. Food Technol Biotechnol 40(1):21–26Google Scholar
  24. Doyle ME, Mazzotta AS (2000) Review of studies on the thermal resistance of Salmonellae. J Food Prot 63(6):779–795.  https://doi.org/10.4315/0362-028X-63.6.779 CrossRefGoogle Scholar
  25. Engehnan MS, Sani RL (1983) Finite-element simulation of an inpackage pasteurization process. Numer Heat Transjkr 6(1):41–54.  https://doi.org/10.1080/01495728308963073 Google Scholar
  26. Etoa FX, Michiels L (1988) Heat-induced resistance of Bacillus stearothermophilus spores. Lett Appl Microbiol 6(3):43–45.  https://doi.org/10.1111/j.1472-765X.1988.tb01211.x CrossRefGoogle Scholar
  27. Evancho GM, Walls I (2001) Aciduric flat sour sporeformers. In: Compendium of methods for the microbiological examination of foods. American Public Health Association, Washington, DC, pp 239–244.  https://doi.org/10.2105/9780875531755ch24
  28. Fields ML (1970) The flat sour bacteria. Adv Food Res 18:163–217.  https://doi.org/10.1016/s0065-2628(08)60370-5 CrossRefGoogle Scholar
  29. Gates SD, Daniel McCartt A, Lappas P, Jeffries JB, Hanson RK, Hokama LA, Mortelmans KE (2010) Bacillus endospore resistance to gas dynamic heating. J Appl Microbiol 109(5):1591–1598.  https://doi.org/10.1111/j.1365-2672.2010.04785.x Google Scholar
  30. Gaze J (2005) Microbiological aspects of thermally processed foods. J Appl Microbiol 98(6):1381–1386.  https://doi.org/10.1111/j.1365-2672.2005.02636.x CrossRefGoogle Scholar
  31. Gómez-Sánchez A (2007) Microorganismos de importancia en el tratamiento térmico de alimentos ácidos y de alta acidez. Temas Selectos Ing Aliment 1:24–32Google Scholar
  32. Gooch JW (2011) Flat sour spoilage. In: Good JW (ed) Encyclopedic dictionary of polymers. Springer. New York, pp 893–893.  https://doi.org/10.1007/978-1-4419-6247-8_13764
  33. Gupta R, Balasubramaniam VM (2012) High-pressure processing of fluid foods. In: Cullen PJ, Tiwari BK, Valdramidis VP (eds) Novel thermal and non-thermal technologies for fluid foods. Academic Press, London, Waltham, and San Diego, pp 109–133.  https://doi.org/10.1016/b978-0-12-381470-8.00005-0
  34. Hall RC (1971) Simple test to predict commercial sterility of heated food products. J Milk Food Technol 34(4):196–197.  https://doi.org/10.4315/0022-2747-34.4.196 CrossRefGoogle Scholar
  35. Heinz G, Hautzinger P (2007) Meat processing technology for small to medium scale producers. Food and Agriculture Organization of the United Nations, Regional office for Asia and the Pacific, Bangkok. ISBN: 978-974-7946-99-4. Available http://www.fao.org/3/a-ai407e.pdf. Accessed 17 Nov 2017
  36. Henriques AO, Moran CP (2000) Structure and assembly of the bacterial endospore coat. Methods 20(1):95–110.  https://doi.org/10.1006/meth.1999.0909 CrossRefGoogle Scholar
  37. Hersom AC, Hulland ED (1981) Canned foods: thermal processing and microbiology, 7th edn. Chemical Publishing Company, New YorkGoogle Scholar
  38. Icier F (2012) Ohmic heating of fluid foods. In: Cullen PJ, Tiwari BK, Valdramidis VP (eds) Novel thermal and non-thermal technologies for fluid foods. Academic Press, London, Waltham, and San Diego, pp 305–367.  https://doi.org/10.1016/b978-0-12-381470-8.00011-6
  39. Jay JM, Loessner MJ, Golden DA (eds) (2008a) Modern food microbiology, 7th edn. Springer Science & Business Media, New York, pp 727–745Google Scholar
  40. Jay JM, Loessner MJ, Golden DA (eds) (2008b) Modern food microbiology, 7th edn. Springer Science & Business Media, New York, pp 301–350Google Scholar
  41. Jay JM, Loessner MJ, Golden DA (eds) (2008c) Modern food microbiology, 7th edn. Springer Science & Business Media, New York, pp 13–37Google Scholar
  42. Jay JM, Loessner MJ, Golden DA (eds) (2008d) Modern food microbiology, 7th edn. Springer Science & Business Media, New York, pp 567–590Google Scholar
  43. Jay JM, Loessner MJ, Golden DA (eds) (2008e) Modern food microbiology, 7th edn. Springer Science & Business Media, New York, pp 415–441Google Scholar
  44. Jay JM, Loessner MJ, Golden DA (eds) (2008f) Modern food microbiology, 7th edn. Springer Science & Business Media, New York, pp 709–726Google Scholar
  45. Jen Y, Manson JE, Stumbo CR, Zahradnik JW (1971) A procedure for estimating sterilization of and quality factor degradation in thermally processed foods. J Food Sci 36(4):693–698.  https://doi.org/10.1111/j.1365-2621.1971.tb15164.x CrossRefGoogle Scholar
  46. Johnson EA (1999) Clostridium—Clostridium Botulinum. Encyclopedia of food microbiology, pp 458–463.  https://doi.org/10.1006/rwfm.1999.0395
  47. Jongyingcharoen JS, Ahmad I (2014) Thermal and non-thermal processing of functional foods. In: Noomhorm A, Ahmad I, Anal AK (eds) Functional foods and dietary supplements: processing effects and health benefits. Wiley, Chichester, UK.  https://doi.org/10.1002/9781118227800.ch11
  48. Kihm DJ, Hutton MT, Hanlin JH, Johnson EA (1988) Zinc stimulates sporulation in Clostridium botulinum 113B. Curr Microbiol 17(4):193–198.  https://doi.org/10.1007/BF01589451 CrossRefGoogle Scholar
  49. Kitabatake N, Trivedi AB, Doi E (1991) Thermal decomposition and detoxification of citrinin under various moisture conditions. J Agric Food Chem 39(12):2240–2244.  https://doi.org/10.1021/jf00012a028
  50. Larousse J, Brown BE (eds) (1997) Food canning technology. Wiley-VCH Inc, New York, Chichester, Weinheim, Brisbane, Singapore, TorontoGoogle Scholar
  51. Labbe RG, Duncan CL (1974) Sporulation and enterotoxin production by Clostridium perfringens type A under conditions of controlled pH and temperature. Can J Microbiol 20(11):1493–1501.  https://doi.org/10.1139/m74-233 CrossRefGoogle Scholar
  52. Lenz MK, Lund DB (1977) The lethality-Fourier number method: experimental verification of a model for calculating average quality factor retention in conduction-heated, canned foods. J Food Sci 42(4):989–996.  https://doi.org/10.1111/j.1365-2621.1977.tb12652.x CrossRefGoogle Scholar
  53. Lund DB (1982) Applications of optimization in heat processing. Food Technol 36(7):97–100Google Scholar
  54. Mañas P, Pagán R (2005) Microbial inactivation by new technologies of food preservation. J Appl Microbiol 98(6):1387–1399.  https://doi.org/10.1111/j.1365-2672.2005.02561.x CrossRefGoogle Scholar
  55. Matsuda N, Komaki M, Ichikawa R, Gotoh S (1985) Aerobic and facultative anaerobic spore-forming bacteria isolated from spoiled canned foods. J Jpn Soc Food Sci Technol 32(6):399–406.  https://doi.org/10.3136/nskkk1962.32.6_399 CrossRefGoogle Scholar
  56. Mauer LJ, Ozen BF (2004) Food Packaging. In: Scott Smith J, Hui YH (eds) Food processing: principles and applications. Blackwell Publishing, Ames and OxfordGoogle Scholar
  57. Mazas M, Lopez M, Gonzalez I, Bernardo A, Martin R (1997) Effects of sporulation pH on the heat resistance and the sporulation of Bacillus cereus. Lett Appl Microbiol 25(5):331–334.  https://doi.org/10.1046/j.1472-765X.1997.00240.x CrossRefGoogle Scholar
  58. McClane BA (2007) Clostridium perfringens. In: Doyle M. Beuchat L (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC, pp 423–444.  https://doi.org/10.1128/9781555815912.ch19
  59. McKenney PT, Driks A, Eichenberger P (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11(1):33–44.  https://doi.org/10.1038/nrmicro2921 CrossRefGoogle Scholar
  60. Membré JM, van Zuijlen A (2011) A probabilistic approach to determine thermal process setting parameters: application for commercial sterility of products. Int J Food Microbiol 144(3):413–420.  https://doi.org/10.1016/j.ijfoodmicro.2010.10.028 CrossRefGoogle Scholar
  61. Mishkin M, Karel M, Saguy I (1982) Applications of optimization in food dehydration. Food Technol 36(7):10l–9Google Scholar
  62. Miyamoto K, Nagahama M (2016) Clostridium: food poisoning by Clostridium perfringens. In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of food and health. Academic Press, Oxford, pp 149–154.  https://doi.org/10.1016/b978-0-12-384947-2.00171-9
  63. Moir A (2006) How do spores germinate? J Appl Microbiol 101(3):526–530.  https://doi.org/10.1111/j.1365-2672.2006.02885.x CrossRefGoogle Scholar
  64. NFPA/CMI Container Integrity Task Force (1984) Botulism risk from post-processing contamination of commercially canned foods in metal containers. J Food Prot 47:801–816CrossRefGoogle Scholar
  65. Nightingale RW, Stallings D (1986) Assessing the extra-commercial food needs of low-income countries. Food Policy 11(1):27–41.  https://doi.org/10.1016/0306-9192(86)90045-x CrossRefGoogle Scholar
  66. Notermans SHW (1999) Clostridium—Detection of neurotoxins of Clostridium botulinum. Encyclopedia of food microbiology, pp 463–466.  https://doi.org/10.1006/rwfm.1999.0400
  67. Olson KE, Sorrells KM (2015) 26. Thermophilic flat sour sporeformers. In: Salfinger Y, Tortorello ML (eds) Compendium of methods for the microbiological examination of foods. American Publih Health Association, Wagshington, DC.  https://doi.org/10.2105/mbef.0222.031
  68. Oomes SJCM, Van Zuijlen ACM, Hehenkamp JO, Witsenboer H, Van der Vossen JMBM, Brul S (2007) The characterisation of Bacillus spores occurring in the manufacturing of (low acid) canned products. Int J Food Microbiol 120(1):85–94.  https://doi.org/10.1016/j.ijfoodmicro.2007.06.013 CrossRefGoogle Scholar
  69. Paidhungat M, Setlow P (2002) Germination and outgrowth. In: Sonenshein AL, Losick R, Hoch JA (eds) Bacillus subtilis and its closest relatives: from genes to cells. American Society for Microbiology, pp 537–548.  https://doi.org/10.1128/9781555817992.ch37
  70. Peleg M (2003) Microbial survival curves: interpretation, mathematical modeling, and utilization. Comments Theor Biol 8(4–5):357–387.  https://doi.org/10.1080/08948550302436 CrossRefGoogle Scholar
  71. Peleg M, Cole MB (1998) Reinterpretation of microbial survival curves. Crit Rev Food Sci 38(5):353–380.  https://doi.org/10.1080/10408699891274246 CrossRefGoogle Scholar
  72. Peleg M, Normand MD, Corradini MG (2005) Generating microbial survival curves during thermal processing in real time. J Appl Microbiol 98(2):406–417.  https://doi.org/10.1111/j.1365-2672.2004.02487.x CrossRefGoogle Scholar
  73. Pflug IJ, Holcomb RG, Gómez MM (2001) Principles of the thermal destruction of microorganisms. In: Block SS (ed) Disinfection, sterilization, and preservation, 5th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  74. Pflung IJ, Odlaugh TE (1978) A review of z and F values used to ensure the safety of low-acid canned foods. Food Technol 2:63–70Google Scholar
  75. Rastogi NK (2012) Infrared heating of fluid foods. In: Cullen PJ, Tiwari BK, Valdramidis VP (eds) Novel thermal and non-thermal technologies for fluid foods. Academic Press, London, Waltham, and San Diego, pp 411–432.  https://doi.org/10.1016/b978-0-12-381470-8.00013-x
  76. Richards GP, McLeod C, Le Guyader FS (2010) Processing strategies to inactivate enteric viruses in shellfish. Food Environ Virol 2(3):183–193.  https://doi.org/10.1007/s12560-010-9045-2 CrossRefGoogle Scholar
  77. Richardson KC (1972) Microbial spoilage in Australian canned foods, 1955–68. Food Technol Aust 24:106–107Google Scholar
  78. Sahin S, Sumnu SG (2006) Thermal properties of foods. In: Sahin S, Sumnu SG, Physical properties of foods, pp 107–155.  https://doi.org/10.1007/0-387-30808-3_3
  79. Schmitt HP (1966) Commercial sterility in canned foods, its meaning and determination. Assoc Food Drug Off US Q Bull 30:141–151Google Scholar
  80. Setlow P, Johnson EA (2013) Spores and their significance. In: Doyle MP, Buchanan RL (eds) Food microbiology: fundamentals and frontiers, 4th edn. American Society of Microbiology, Washington, D.C., pp 45–79.  https://doi.org/10.1128/9781555818463.ch3
  81. Stumbo CR (1973) Thermobacteriology in food processing, 2nd edn. Academic Press Inc, New YorkGoogle Scholar
  82. Teixeira AA (1971) Thermal process optimization through computer simulation of variable boundary control and container geometry. Dissertation, University of Massachusetts, AmherstGoogle Scholar
  83. Tiwari BK, Mason TJ (2012) In: Cullen PJ, Tiwari BK, Valdramidis VP (eds) Novel Thermal and non-thermal technologies for fluid foods. Academic Press, London, Waltham, and San Diego, pp 135–165.  https://doi.org/10.1016/b978-0-12-381470-8.00006-2
  84. Tucker GS, Featherstone S (2011) Essentials of thermal processing. Wiley, New YorkGoogle Scholar
  85. Vasseur C, Baverel L, Hebraud M, Labadie J (1999) Effect of osmotic, alkaline, acid or thermal stresses on the growth and inhibition of Listeria monocytogenes. J Appl Microbiol 86(3):469–476.  https://doi.org/10.1046/j.1365-2672.1999.00686.x CrossRefGoogle Scholar
  86. Von Bockelmann BA, Von Bockelmann IL (1986) Aseptic packaging of liquid food products: a literature review. J Agric Food Chem 34(3):384–392.  https://doi.org/10.1021/jf00069a001 CrossRefGoogle Scholar
  87. Wells-Bennik MH, Eijlander RT, Den Besten HM, Berendsen EM, Warda AK, Krawczyk AO, Nierop Groot MN, Xiao Y, Zwietering MH, Kuipers OP, Abee T (2016) Bacterial spores in food: survival, emergence, and outgrowth. Ann Rev Food Sci Technol 7:457–482.  https://doi.org/10.1146/annurev-food-041715-033144 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Stazione Sperimentale per L’Industria delle Conserve Alimentari, Food PackagingParmaItaly
  2. 2.Associazione ‘Componiamo il Futuro’ (CO.I.F.)PalermoItaly
  3. 3.Food TechnologistSan Marco EvangelistaItaly

Personalised recommendations