Skip to main content

Reconstruction of 3D Muscle Fiber Structure Using High Resolution Cryosectioned Volume

  • Conference paper
  • First Online:
Book cover Computational Methods and Clinical Applications in Musculoskeletal Imaging (MSKI 2017)

Abstract

Three-dimensional (3D) muscle fiber architecture is important in patient-specific biomechanical simulation. While several in-vivo methods using diffusion tensor imaging and ultrasound have been demonstrated their feasibility in reconstruction of the fiber architecture, the main challenge is the lack of gold standard. Although physical measurement from cadavers has been considered as the accurate way of determining 3D muscle fiber architecture, its downsides include error in the manual tracing and the labor intensive process allowing only sparse sampling of a particular muscle. We propose an alternative method of obtaining a dense fiber architecture of multiple muscles in close proximity using high resolution cryosectioned images. Similar to the diffusion tensor imaging, we first extract the local orientation at each voxel using the structure tensor analysis and then tractography algorithm is applied to obtain stream lines. The proposed method was applied to all muscles around the hip joint and the masticatory muscles. Qualitative comparison with the anatomy textbook indicated that the proposed method reconstructed a plausible muscle fiber architecture. We plan to make the reconstructed fiber architecture of whole body muscles publicly available in order to serve for the biomechanics community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.slicer.org.

  2. 2.

    http://dmri.slicer.org.

References

  1. Rajagopal, A., Dembia, C., DeMers, M., Delp, D., Hicks, J., Delp, S.: Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63(10), 2068–2079 (2016)

    Article  Google Scholar 

  2. Marra, M., Vanheule, V., Fluit, R., Koopman, B., Rasmussen, J., Verdonschot, N., Andersen, M.: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. J. Biomech. Eng. 137(2), 020904 (2015)

    Article  Google Scholar 

  3. Webb, J., Blemker, S., Delp, S.: 3D finite element models of shoulder muscles for computing lines of actions and moment arms. Comput. Methods Biomech. Biomed. Engin. 17(8), 829–837 (2014)

    Article  Google Scholar 

  4. Hicks, J., Uchida, T., Seth, A., Rajagopal, A., Delp, S.: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J. Biomech. Eng. 137(2), 020905 (2015)

    Article  Google Scholar 

  5. Blemker, S., Delp, S.: Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33(5), 661–673 (2005)

    Article  Google Scholar 

  6. Damon, B., Froeling, M., Buck, A., Oudeman, J., Ding, Z., Nederveen, A., Bush, E., Strijkers, G.: Skeletal muscle diffusion tensor-MRI fiber tracking: rationale, data acquisition and analysis methods, applications and future directions. NMR Biomed. 30(3), e3563 (2017)

    Article  Google Scholar 

  7. Bolsterlee, B., Veeger, H., van der Helm, F., Gandevia, S., Herbert, R.: Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images. J. Biomech. 48(6), 1133–1140 (2015)

    Article  Google Scholar 

  8. Schenk, P., Siebert, T., Hiepe, P., Güllmar, D., Reichenbach, J., Wick, C., Blickhan, R., Böl, M.: Determination of three-dimensional muscle architectures: validation of the DTI-based fiber tractography method by manual digitization. J. Anat. 223(1), 61–68 (2013)

    Article  Google Scholar 

  9. Engelina, S., Robertson, C., Moggridge, J., Killingback, A., Adds, P.: Using ultrasound to measure the fibre angle of vastus medialis oblique: a cadaveric validation study. Knee 21(1), 107–111 (2014)

    Article  Google Scholar 

  10. Wang, H., Lenglet, C., Akkin, T.: Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain. J. Biomed. Opt. 20(3), 036003 (2015)

    Article  Google Scholar 

  11. Park, J., Chung, M., Hwang, S., Lee, Y., Har, D., Park, H.: Visible Korean human: improved serially sectioned images of the entire body. IEEE Trans. Med. Imaging 24(3), 352–360 (2005)

    Article  Google Scholar 

  12. Shin, D., Jang, H., Hwang, S., Har, D., Moon, Y., Chung, M.: Two-dimensional sectioned images and three-dimensional surface models for learning the anatomy of the female pelvis. Anat. Sci. Educ. 6(5), 316–323 (2013)

    Article  Google Scholar 

  13. Bigun, J.: Optimal orientation detection of linear symmetry. In: Proceedings of the 1st IEEE International Conference on Computer Vision - ICCV 1987, pp. 433–438. IEEE (1987)

    Google Scholar 

  14. Westin, C., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., Kikinis, R.: Processing and visualization for diffusion tensor MRI. Med. Image Anal. 6(2), 93–108 (2002)

    Article  Google Scholar 

  15. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J., Pieper, S., Kikinis, R.: 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Resonan. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  16. Netter, F.: Atlas of Human Anatomy. Netter Basic Science, Elsevier Health Sciences (2010)

    Google Scholar 

  17. O’Donnell, L., Westin, C.F.: Automatic tractography segmentationu using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging 26(11), 1562–1575 (2007)

    Article  Google Scholar 

  18. Park, H., Choi, D., Park, J.: Improved sectioned images and surface models of the whole female body. Int. J. Morphol. 33(4), 1323–1332 (2015)

    Article  Google Scholar 

  19. Yokota, F., Takaya, M., Okada, T., Sugano, N., Tada, Y., Tomiyama, N., Sato, Y.: Automated muscle segmentation from 3D CT data of the hip using hierarchical multi-atlas method. In: Proceedings of the 12th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery - CAOS 2012 (2012)

    Google Scholar 

Download references

Acknowledgements

This research was supported by MEXT/JSPS KAKENHI 26108004, JST PRESTO 20407, and AMED/ETH the strategic Japanese-Swiss cooperative research program, NIH grant U01CA199459 and P41EB015902.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshito Otake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otake, Y. et al. (2018). Reconstruction of 3D Muscle Fiber Structure Using High Resolution Cryosectioned Volume. In: Glocker, B., Yao, J., Vrtovec, T., Frangi, A., Zheng, G. (eds) Computational Methods and Clinical Applications in Musculoskeletal Imaging. MSKI 2017. Lecture Notes in Computer Science(), vol 10734. Springer, Cham. https://doi.org/10.1007/978-3-319-74113-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74113-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74112-3

  • Online ISBN: 978-3-319-74113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics