Skip to main content

Dynamics of a Fixed Bed Adsorption Column in the Kinetic Separation of Hexane Isomers in MOF ZIF-8

  • Conference paper
  • First Online:
Modeling, Dynamics, Optimization and Bioeconomics III (DGS 2016, BIOECONOMY 2015)

Abstract

A fixed bed adsorption mathematical model has been developed to describe the kinetic separation of hexane isomers when they flow through a packed bed containing the microporous Metal-Organic Framework (MOF) ZIF-8 adsorbent. The flow of inert and adsorbable species through the fixed bed is modeled with fundamental differential equations according to the mass and heat conservation laws, a general isotherm to describe adsorption equilibrium and a lumped kinetic mass transfer mechanism between bulk gas phase and the porous solid. It is shown that a proper combination of two characteristic times (the residence time of the gas in the fixed bed, \(\tau _{fb}\) and the characteristic time of diffusion of solutes into the pores \(\tau _{dif}\)) can lead to very different dynamics of fixed bed adsorbers where in a limiting case can gives rise to a spontaneous breakthrough curves of solutes. The numerical simulations of an experimental breakthrough curve with the developed mathematical model clearly explain the complete separation between linear n-Hexane (nHEX) and the respective branched isomers: 3-Methyl-Pentane (3MP) and 2, 2-Dimethyl-Butane (22DMB). The separation is due to significant differences in the diffusivity parameters \(\tau _{dif}\) between 3MP and 22DMB and the residence time of the gas mixture \(\tau _{fb}\) within the fixed bed. This work shows the importance of mathematical modelling for the comprehension and design of adsorption separation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bárcia, P.S., Silva, J.A.C., Rodrigues, A.E.: Ind. Eng. Chem. Res. 45, 4316–28 (2006)

    Article  Google Scholar 

  2. Cameron, I.T., Hangos, K.: Process Modelling and Model Analysis, 1st edn. Academic Press, Cambridge (2001). ISBN: 9780121569310

    Google Scholar 

  3. Chang, N., Gu, Z.Y., Yan, X.P.: Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes. J. Am. Chem. Soc. 132(39), 13645–7 (2010)

    Article  Google Scholar 

  4. Cusher, N.A.: UOP TIP and once-through zeolitic isomerization processes. In: Meyers, R.A. (ed.) Handbook of Petroleum Refining Processes, 3rd edn. McGraw Hill, New York (2004)

    Google Scholar 

  5. Danckwerts, P.V.: Continuous flow systems. Distribution of residence times. Chem. Eng. Sci. 2, 1–13 (1953)

    Article  Google Scholar 

  6. Deschamps, A., Jullian, S.: Adsorption in the oil and gas industry. In: Wauquier, J.P. (ed.) Petroleum Refining: Separation Processes, vol. 2. Technip, Paris (2000)

    Google Scholar 

  7. Ferreira, A.F.P., Mittelmeijer-Hazeleger, M.C., Granato, M.A., Martins, V.F.D., Rodrigues, A.E., Rothenberg, G.: Sieving di-branched from mono-branched and linear alkanes using ZIF-8: experimental proof and theoretical explanation. Phys. Chem. Chem. Phys. 15, 8795–8804 (2013)

    Article  Google Scholar 

  8. Finlayson, B.A.: The method of weighted residuals and variational principles. Soc. Ind. Appl. Math. (SIAM) (2014). ISBN-10: 1611973236

    Google Scholar 

  9. Glueckauf, E.: Formulae for diffusion into spheres and their application to chromatography. J. Chem. Soc. 51, 1540–1551 (1955)

    Google Scholar 

  10. Holcombe, T.C.: U.S. Patent 4,176,053 (1979)

    Google Scholar 

  11. Holcombe, T.C.: U.S. Patent 4,210,771 (1980)

    Google Scholar 

  12. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  Google Scholar 

  13. Luebbers, M.T., Wu, T., Shen, L., Masel, R.I.: Trends in the adsorption of volatile organic compounds in a large-pore metal-organic framework, IRMOF-1. Langmuir 26(13), 11319–29 (2010)

    Article  Google Scholar 

  14. Mendes, P.A.P., Rodrigues, A.E., Horcajada, P., Serre, C., Silva, J.A.C.: Single and multicomponent adsorption of hexane isomers in the microporous ZIF-8. Micropor. Mesopor. Mater. 194, 146–156 (2014)

    Article  Google Scholar 

  15. Minkkinen, A., Mank, L., Jullian, S.: U.S. Patent 5,233,120 (1993)

    Google Scholar 

  16. Park, K.S., Ni, Z., Côte, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K.: M. O’Keeffe, O. M. Yaghi. PNAS 103(27), 10186–91 (2006)

    Google Scholar 

  17. Peralta, D., Chaplais, G., Masseron, A.S., Barthelet, K., Pirngruber, G.D.: Ind. Eng. Chem. Res. 51(12), 4692–4702 (2012)

    Article  Google Scholar 

  18. Rice, R.G., Do, D.D.: Applied Mathematics and Modeling for Chemical Engineers. Wiley, New York (1995)

    Google Scholar 

  19. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. John Wiley and Sons, New York (1984)

    Google Scholar 

  20. Schiesser, W.E.: Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  21. Villadsen, J.V., Michelsen, M.L.: Solution of Differential Equation Models by Polynomial Approximation. Prentice-Hall Inc., Englewood Cliffs, New Jersey (1978)

    MATH  Google Scholar 

  22. Yang, R.T.: Gas Separation By Adsorption Processes. Butterworth, Stoneham (1987)

    Google Scholar 

  23. Zhang, K., Lively, R.P., Zhang, C., Chance, R.R., Koros, W.J., Sholl, D.S., Nair, S.: Exploring the framework hydrophobicity and flexibility of ZIF-8: from biofuel recovery to hydrocarbon separations. J. Phys. Chem. Lett. 4, 3618–3622 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. C. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mendes, P.A.P., Rodrigues, A.E., Almeida, J.P., Silva, J.A.C. (2018). Dynamics of a Fixed Bed Adsorption Column in the Kinetic Separation of Hexane Isomers in MOF ZIF-8. In: Pinto, A., Zilberman, D. (eds) Modeling, Dynamics, Optimization and Bioeconomics III. DGS BIOECONOMY 2016 2015. Springer Proceedings in Mathematics & Statistics, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-319-74086-7_12

Download citation

Publish with us

Policies and ethics