Skip to main content

Evaluation of Scheduling Algorithms for 5G Mobile Systems

  • Chapter
  • First Online:
Book cover Computer Science and Engineering—Theory and Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 143))

Abstract

One of the key elements of the fifth generation (5G) of mobile communication systems is the support of a large number of users communicating through a wide range of devices and applications. These conditions give rise to heterogeneous traffic offered to the network. In order to carry such traffic in a wireless network, the design and development of schedulers capable of considering the conditions of each user is needed. In this chapter a Model Based Design (MBD) and Model Based Testing (MBT) approach are used to implement and evaluate different scheduling algorithms that consider the Quality of Service (QoS) requirements of each user as well as the individual channel conditions. The development process is achieved through a hardware platform consisting of an FPGA and a System on Chip in order to provide an emulation environment. The development process as well as the results obtained (in terms of throughput and fairness) through the evaluation of Maximum Rate (MR), Round Robin (RR), Proportional Fair (PF) and a proposed novel UE-based Maximum Rate (UEMR) scheduling algorithms are presented. Using MBD together with MBT the developed scheduling algorithms can be further enhanced and exported to real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agiwal M, Roy A, Saxena N (2016) Next generation 5g wireless networks: a comprehensive survey. IEEE Commun Surv Tutorials 18(3):1617–1655

    Article  Google Scholar 

  2. Panwar N, Sharma S, Sing A (2016) A survey on 5G: the next generation of mobile communication. Phys Commun 18:64–84

    Article  Google Scholar 

  3. Shafi M et al (2017) 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J Sel Areas Commun 35(6):1201–1221

    Article  Google Scholar 

  4. Mumtaz S, Morgado A, Huq KMS, Rodriguez J (2017) A survey of 5G technologies: regulatory, standardization and industrial perspectives. Digital Commun Netw. https://doi.org/10.1016/j.dcan.2017.09.010

  5. Haidine A, Hassani SE (2016) LTE-a pro (4.5G) as pre-phase for 5G deployment: closing the gap between technical requirements and network performance. Paper presented at International Conference on Advanced Communication Systems and Information Security (ACOSIS), Marrakesh, Morocco, 17–19 October 2016

    Google Scholar 

  6. Rost P et al (2016) Mobile network architecture evolution toward 5G. IEEE Commun Mag 54(5):84–91

    Article  Google Scholar 

  7. Akyildiz I, Nie S, Chun LS, Chandrasekaran M (2016) 5G roadmap: 10 key enabling technologies. Comput Netw 106:17–48

    Article  Google Scholar 

  8. Schwarz S, Rupp M (2016) Society in motion: challenges for LTE and beyond mobile communications. IEEE Commun Mag 54(5):76–83

    Article  Google Scholar 

  9. Suganya S, Maheshwari S, Latha YS, Ramesh C (2016) Resource scheduling algorithms for LTE using weights. Paper presented at the 2nd international conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Bengalore, India, 21–23 July 2016

    Google Scholar 

  10. Héliot F, Imran M, Tafazolli R (2013) Low-complexity energy-efficient resource allocation for the downlink of cellular systems. IEEE Trans Commun 61(6):2271–2281

    Article  Google Scholar 

  11. Gavrilovska L, Talevski D (2011) Novel scheduling algorithms for LTE downlink transmission. Paper presented at the 19th Telecommunications Forum (TELFOR), Belgrade, Serbia, 22–24 November 2011

    Google Scholar 

  12. Kwan R, Leung C, Zhang J (2009) Proportional fair multiuser scheduling in LTE. IEEE Signal Process Lett 16(6):461–464

    Article  Google Scholar 

  13. Kaneko M, Popovski P, Dahl J (2006) Proportional fairness in multi-carrier system: upper bound and approximation algorithms. IEEE Commun Lett 10(6):462–464

    Article  Google Scholar 

  14. Yang T, Héliot F, Heng C (2015) A survey of green scheduling schemes for homogeneous and heterogeneous cellular networks. IEEE Commun Mag 53(11):175–181

    Article  Google Scholar 

  15. Dahlman E, Parkvall S, Sköld J (2011) 4G LTE/LTE-advanced for mobile broadband. Academic Press, Elsevier, Tokyo

    Google Scholar 

  16. Sesia S, Toufik I, Matthew PJ (2011) The UMTS long term evolution: from theory to practice. Wiley, London

    Book  Google Scholar 

  17. Mehaseb MA, Gadallah Y, Elhamy A, Elhennawy H (2016) Classification of LTE uplink scheduling techniques: an M2 M perspective. IEEE Comm Surv Tutorials 18(2):1310–1335

    Article  Google Scholar 

  18. Góra J (2014) QoS-aware resource management for LTE-Advanced relay-enhanced network. Dig J Wireless Commun Networking. https://doi.org/10.1186/1687-1499-2014-178

    Google Scholar 

  19. Castañeda E, Silva A, Gameiro A, Kountouris M (2017) An overview on resource allocation techniques for multi-user MIMO systems. IEEE Comm Surv Tutorials 19(1):239–284

    Article  Google Scholar 

  20. Clerckx B, Joudeh H, Hao C, Dai M, Rassouli B (2016) Rate splitting for MIMO wireless networks: a promising PHY-layer strategy for LTE evolution. IEEE Commun Mag 54(5):98–105

    Article  Google Scholar 

  21. Jo M, Maksymyuk T, Batista R, Maciel TF, de Almeida A, Klymash M (2014) A survey of converging solutions for heterogeneous mobile networks. IEEE Wirel Commun 21(6):54–62

    Article  Google Scholar 

  22. Hossain E, Rasti M, Tabassum H, Abdelnasser A (2014) Evolution towards 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Commun 21(3):118–127

    Article  Google Scholar 

  23. Gesbert D et al (2010) Multi-cell MIMO cooperative networks: a new look at interference. IEEE J Sel Areas Commun 28(9):1380–1408

    Article  Google Scholar 

  24. Salman EH, Noordin NK, Hashim SJ, Hashim F, Ng CK (2017) An overview of spectrum techniques for cognitive LTE and LTE-A radio system. Telecommun Syst 65:215–228

    Article  Google Scholar 

  25. Liu L et al (2012) Downlink MIMO in LTE-advanced: SU-MIMO vs. MU-MIMO. IEEE Commun Mag 50(2):140–147

    Article  Google Scholar 

  26. Thakur R, Kotagi VJ, Murthy SR (2017) Resource allocation and cell selection framework for LTE-Unlicensed femtocell networks. Comput Netw. https://doi.org/10.1016/j.comnet.2017.10.004

    Google Scholar 

  27. Bhamri A, Hooli K, Lunttila T (2016) Massive carrier aggregation in LTE-Advanced Pro: impact on uplink control information and corresponding enhancements. IEEE Commun Mag 54(5):92–97

    Article  Google Scholar 

  28. Kong C, Peng IH (2017) Tradeoff design of radio resource scheduling for power and spectrum utilizations in LTE uplink systems. J Netw Comput Appl 78:116–124

    Article  Google Scholar 

  29. Ohta Y, Nakamura M, Kawasaki Y, Ode T (2016) Controlling TCP ACK transmission for throughput improvement in LTE-Advanced Pro. Paper presented at the Conference on Standards for Communications and Networking (CSCN), Berlin, Germany, 31 October–2 November 2016

    Google Scholar 

  30. Pedersen KI, Kolding TE, Frederiksen F, Kovács IZ, Laselva D, Mogensen PE (2009) An overview of downlink radio resource management for UTRAN long-term evolution. IEEE Commun Mag 47(7):86–93

    Article  Google Scholar 

  31. Olwal T, Djouani K, Kurien AM (2016) A survey of resource management toward 5G radio access networks. IEEE Commun Surv Tutorials 18(3):1656–1686

    Article  Google Scholar 

  32. Li Y, Gao Z, Huang L, Du X, Guizani M (2017) Resource management for future mobile networks: architecture and technologies. Comput Netw. https://doi.org/10.1016/j.comnet.2017.04.007

    Google Scholar 

  33. Ahmad A, Ahmad S, Rehmani M, Hassan N (2015) A survey on radio resource allocation in cognitive radio sensor networks. IEEE Commun Surv Tutorials 17(2):888–917

    Article  Google Scholar 

  34. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Policy and charging control architecture (Release 12), Release 12, 2014

    Google Scholar 

  35. Holma H, Toskala A (2010) Packet Scheduling In: Wigard J, Holma H, Cury R, Madsen N, Frederiksen F, Kristensson M (ed) WCDMA for UMTS: HSPA Evolution and LTE, Fifth edition, Wiley, Chichester, UK, pp 255–291

    Google Scholar 

  36. Mishra A, Venkitasubramaniam P (2016) Anonymity and fairness in packet scheduling: a quantitative tradeoff. IEEE/ACM Trans Networking 24(2):688–702

    Article  Google Scholar 

  37. Maia AM, Vieira D, Castro MF, Ghamri-Doudane Y (2016) A fair QoS-aware dynamic LTE scheduler for machine-to-machine communication. Comput Commun 89–90:75–86

    Article  Google Scholar 

  38. Kumar S, Sarkar A, Sriram S, Sur A (2015) A three level LTE downlink scheduling framework for RT VBR traffic. Comput Netw 91:654–674

    Article  Google Scholar 

  39. Blake S, Black D, Carlson M, Davies E, Wang Z, Weiss W (1988) An architecture for differentiated services. RFC 2475, ACM Digital Library

    Google Scholar 

  40. Benchaabene Y, Boujnah N, Zarai F (2016) Performance comparison of packet scheduling algorithms for voice over IP in LTE cellular network. Paper presented at the 4th international conference on Control Engineering & Information Technology (CEIT), Hammamet, Tunisia, 16–18 December 2016

    Google Scholar 

  41. Subramanian R, Sandrasegaran K, Kong X (2016) Performance comparison of packet scheduling algorithms in LTE-A HetNets. Paper presented at the 22nd Asia-Pacific conference on Communications (APCC), Yogyakarta, Indonesia, 25–27 August 2016

    Google Scholar 

  42. Gong Y, Yan B, Lin S, Li Y, Guan L (2016) Priority-based LTE down-link packet scheduling for Smart Grid communication. Paper presented at the 2nd IEEE international conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016

    Google Scholar 

  43. Sharifian A, Schoenen R, Yanikomeroglu H (2016) Joint realtime and nonrealtime flows packet scheduling and resource block allocation in wireless OFDMA networks. IEEE Trans Veh Technol 65(4):2589–2607

    Article  Google Scholar 

  44. Zander-Nowicka J, Xiong X, Schieferdecker I (2008) Systematic test data generation for embedded software. Paper presented at the international conference on Software Engineering Research & Practice (SERP), Las Vegas, Nevada, USA, 14–17 July 2008

    Google Scholar 

  45. Schäuffele J, Zurawka T (2010) Automotive software engineering. Springer, Germany

    Book  Google Scholar 

  46. Utting M, Legeard B (2007) Practical model-based testing: A tools approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

    Google Scholar 

  47. Russ M, Danzer B, Korotkiy D (2006) Virtueller Funktionstest für eingebettete Systeme: Frühzeitige Fehlererkennung reduziert kostenintensive Iterationszyklen

    Google Scholar 

  48. Jondral FK, Schwall M, Nagel S (2011) Model-based waveform design for heterogeneous SDR Platforms with Simulink. Paper presented at the symposium & wireless summer school. Virginia Tech, Blacksburg, USA

    Google Scholar 

  49. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220

    Article  Google Scholar 

  50. Farhan M, Naghmash MS, Abbas F (2014) Optimal design for software defined radio based FPGA. J Eng Dev 18(3):148–161

    Google Scholar 

  51. Lyrtech Inc (2009) Small form factor SDR evaluation module/development platform. User’s guide, 2nd edn. Lyrtech Inc

    Google Scholar 

  52. Fodor G, Racz A, Reider N, Temesvary A (2007) Chapter 4: architecture and protocol support for radio resource management (RRM). Long Term Evolution 3GPP LTE radio and cellular technology (Furht B, Ahson SA)

    Google Scholar 

  53. Overview of 3GPP Release 13 V0.0.5 (2014) Overview of 3GPP Release 13 V0.0.5

    Google Scholar 

  54. Cavalcanti F, Anderson S (2009) Optimizing wireless communication systems. Springer, USA

    Book  MATH  Google Scholar 

  55. Jang J, Bok L (2003) Transmit power adaptation for multiuser OFDM systems. IEEE J Select Areas Commun 21(2):171–178

    Article  Google Scholar 

  56. Holtzman JM (2000) CDMA forward link waterfilling power control. Paper presented at the 51st IEEE vehicular technology conference, Tokyo, Japan, 15–18 May 2000

    Google Scholar 

  57. Viswanath P, Tse D, Laroia R (2002) Opportunistic beamforming using dumb antennas. IEEE Trans Inform Theory 48(6):1277–1294

    Article  MathSciNet  MATH  Google Scholar 

  58. Jalali A, Padovani R, Pankaj R (2000) Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system. Paper presented at the 51st IEEE vehicular technology conference, Tokyo, Japan, 15–18 May 2000

    Google Scholar 

  59. Kim H, Han Y (2005) A proportional fair scheduling for multicarrier transmission systems. IEEE Commun Letters 9(3):210–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel G. Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller, C.F., Galaviz, G., Andrade, Á.G., Kaiser, I., Fengler, W. (2018). Evaluation of Scheduling Algorithms for 5G Mobile Systems. In: Sanchez, M., Aguilar, L., Castañón-Puga, M., Rodríguez-Díaz, A. (eds) Computer Science and Engineering—Theory and Applications. Studies in Systems, Decision and Control, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-319-74060-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74060-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74059-1

  • Online ISBN: 978-3-319-74060-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics