Skip to main content

Ascorbate as a Key Player in Plant Abiotic Stress Response and Tolerance

  • Chapter
  • First Online:
Ascorbic Acid in Plant Growth, Development and Stress Tolerance

Abstract

During their lifespan, plants are frequently exposed to adverse environmental conditions such as high solar irradiance, drought, heat, chilling, salinity, metal excess, and nutrient deficiency. The effects of these factors on plants are often interrelated and usually result in a decreased capacity of carbon fixation in photosynthesis, disturbed redox homeostasis, and growth arrest. Under severe conditions, increased excitation pressure in the chloroplasts exceeds the antioxidative capacity of plant cells leading to oxidative damage of cellular constituents. Although the plant ascorbate (Asc) level varies depending on external factors, developmental stage, diurnal rhythm, and light, its redox status is related to redox homeostasis in the cell. In chloroplasts, peroxisomes, and cytosol, Asc has a key role in hydrogen peroxide (H2O2) scavenging via Asc peroxidase and is efficiently recycled via the ascorbate-glutathione (Asc–GSH) cycle and directly by monodehydroascorbate reductase activity. In apoplast and vacuoles, Asc is the main reductant of phenolic radicals generated under oxidative stress. Besides its antioxidative role, Asc has an important role in a complex and well-orchestrated plant response network to environmental stress, performing multiple tasks in redox signalling, regulation of enzymatic activities, modulation of gene expression, biosynthesis of phytohormones, and growth regulation. The content of Asc and its redox state is tightly related to cellular compartments. Therefore, it is important to emphasize Asc cellular distribution, which has a great impact on reactive oxygen species regulation and signalling. Numerous studies on transgenic plants with altered endogenous Asc levels and redox status were done with the aim to influence plant growth and improve tolerance to various abiotic stressors. In this chapter, we discuss the current understanding of the involvement of Asc metabolism in abiotic stress response. Moreover, the improved resilience to stressors in transgenic plants with altered enzymes involved in Asc biosynthesis and recycling will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo E, Hsiao TC, Henderson DW (1971) Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol 48:631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agati G, Stefano G, Biricolti S, Tattini M (2009) Mesophyll distribution of ‘antioxidant’ flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Ann Bot 104:853–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar TA, Lees HA, Lampi MA, Enstone D, Brain RA, Greenberg BM (2010) Photosynthetic redox imbalance influences flavonoid biosynthesis in Lemna gibba. Plant Cell Environ 33:1205–1219

    CAS  PubMed  Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    Article  PubMed  PubMed Central  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1, 4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Aphalo PJ, Albert A, Björn LO, McLeod A, Robson TM, Rosenqvist E (2012) In: Aphalo PJ, Albert A, Björn LO, McLeod A, Robson TM, Rosenqvist E (eds) Beyond the visible: a handbook of best practice in plant UV photobiology. University of Helsinki (Helsingin yliopisto), Finland

    Google Scholar 

  • Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni O, Bitonti MB, Cozza R, Innocenti AM, Liso R, Veltri R (1989) Ascorbic acid effect on pericycle cell line in Allium cepa root. Caryologia 42:213–216

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai N, Matsuyama T, Tamaoki M, Nakajima N, Kubo A, Aono M, Kato T, Tabata S, Shirano Y, Shibata D, Hayashi H (2004) Compensation for lack of a cytosolic ascorbate peroxidase in an Arabidopsis mutant by activation of multiple antioxidative systems. Plant Sci 166:1547–1554

    Article  CAS  Google Scholar 

  • Aver’yanov AA (1985) Superoxide radical generation by intact pea roots. Fiziologiya Rastenii 32:268–273

    Google Scholar 

  • Awad J, Stotz HU, Fekete A, Krischke M, Engert C, Havaux M, Berger S, Mueller MJ (2015) 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions. Plant Physiol 167:1592–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Enéas-Filho J, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  CAS  Google Scholar 

  • Badejo AA, Esaka M (2010) Identification of potential gene targets for the improvement of ascorbate contents of genetically modified plants. In: Anjum NA, Umar S, Chan MT (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Netherlands, pp 405–428

    Chapter  Google Scholar 

  • Badger MR, Kaplan A, Berry JA (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66:407–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baier M, Noctor G, Foyer CH, Dietz K-J (2000) Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol 124:823–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Ballaré CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226–241

    Article  PubMed  CAS  Google Scholar 

  • Bánhegyi G, Benedetti A, Margittai É, Marcolongo P, Fulceri R, Németh CE, Szarka A (2014) Subcellular compartmentation of ascorbate and its variation in disease states. Biochim Biophys Acta 1843:1909–1916

    Article  PubMed  CAS  Google Scholar 

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134:1784–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Guiamet JJ, Kiddle G, Pastori GM, Di Cagno R, Theodoulou FL, Foyer CH (2005) Ascorbate content of wheat leaves is not determined by maximal L-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant Cell Environ 28:1073–1081

    Article  CAS  Google Scholar 

  • Bartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Tambussi EA, Diego F, Foyer CH (2009) Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett 583:118–122

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross-tolerance to stress. Environ Exp Bot 94:73–88

    Article  CAS  Google Scholar 

  • Behn H, Albert A, Marx F, Noga G, Ulbrich A (2010) Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha × piperita L.) J Agric Food Chem 58:7361–7367

    Article  CAS  PubMed  Google Scholar 

  • Bielen A, Remans T, Vangronsveld J, Cuypers A (2013) The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int J Mol Sci 14:6382–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielski BH, Allen AO, Schwarz HA (1981) Mechanism of the disproportionation of ascorbate radicals. J Am Chem Soc 103:3516–3518

    Article  CAS  Google Scholar 

  • Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Bolink EM, Van Schalkwijk I, Posthumus F, Van Hasselt PR (2001) Growth under UV-B radiation increases tolerance to high-light stress in pea and bean plants. Plant Ecol 154:147–156

    Article  Google Scholar 

  • Bolt S, Zuther E, Zintl S, Hincha DK, Schmülling T (2017) ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell Environ 40:108–120

    Article  CAS  PubMed  Google Scholar 

  • Brosche M, Kangasjarvi J (2012) Low antioxidant concentrations impact on multiple signaling pathways in Arabidopsis thaliana partly through NPR1. J Exp Bot 63:1849–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brossa R, López-Carbonell M, Jubany-Marí T, Alegre L (2011) Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants. J Plant Growth Regul 30:322–333

    Article  CAS  Google Scholar 

  • Brossa R, Pintó-Marijuan M, Jiang K, Alegre L, Feldman LJ (2013) Assessing the regulation of leaf redox status under water stress conditions in Arabidopsis thaliana: Col-0 ecotype (wild type and vtc-2), expressing mitochondrial and cytosolic roGFP1. Plant Signal Behav 8:e24781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102:18225–18230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  CAS  PubMed  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541

    Article  CAS  PubMed  Google Scholar 

  • Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  CAS  PubMed  Google Scholar 

  • Cabelli DE, Bielski BH (1983) Kinetics and mechanism for the oxidation of ascorbic acid/ascorbate by HO2 /O2 •- (hydroperoxyl/superoxide) radicals. A pulse radiolysis and stopped-flow photolysis study. J Phys Chem 87:1809–1812

    Article  CAS  Google Scholar 

  • Camarena V, Wang G (2016) The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci 73:1645–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot 28:231–238

    Article  CAS  Google Scholar 

  • Chao YY, Hong CY, Kao CH (2010) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem 48:374–381

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman JM (2007) Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1:4–15

    Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2008) Dehydroascorbate reductase affects non-photochemical quenching and photosynthetic performance. J Biol Chem 283:21347–21361

    Article  CAS  PubMed  Google Scholar 

  • Chen SX, Schopfer P (1999) Hydroxyl-radical production in physiological reactions. FEBS J 260:726–735

    CAS  Google Scholar 

  • Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel BH, Vanková R, Amir R, Miller G (2014) Ascorbate peroxidase6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross-talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 166:370–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ethylene response factor1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci U S A 93:9970–9974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci U S A 96:4198–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, DePaolo D, Wintle B, Schatz C, Buckenmeyer G (2013) Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase: protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot 64:2793–2804

    Article  CAS  PubMed  Google Scholar 

  • Córdoba F, González-Reyes JA (1994) Ascorbate and plant cell growth. J Bioenerg Biomembr 26:399–405

    Article  PubMed  Google Scholar 

  • Córdoba-Pedregosa M, Córdoba F, Villalba JM, González-Reyes JA (2003) Differential distribution of ascorbic acid, peroxidase activity, and hydrogen peroxide along the root axis in Allium cepa L. and its possible relationship with cell growth and differentiation. Protoplasma 221:57–65

    Article  CAS  Google Scholar 

  • Cramer GR, Bowman DC (1991) Kinetics of maize leaf elongation: I. Increased yield threshold limits short-term, steady-state elongation rates after exposure to salinity. J Exp Bot 42:1417–1426

    Article  Google Scholar 

  • D’Haese D, Vandermeiren K, Asard HAN, Horemans N (2005) Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L. Plant Cell Environ 28:623–632

    Article  Google Scholar 

  • De Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  Google Scholar 

  • De Gara L, De Pinto MC, Arrigoni O (1997) Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant 100:894–900

    Article  Google Scholar 

  • De Pinto MC, De Gara L (2004) Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J Exp Bot 55:2559–2569

    Article  PubMed  CAS  Google Scholar 

  • De Pinto MC, Francis D, De Gara L (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97

    Article  PubMed  Google Scholar 

  • De Tullio M, Guether M, Balestrini R (2013) Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant Signal Behav 8:e23213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debolt S, Melino V, Ford CM (2007) Ascorbate as a biosynthetic precursor in plants. Ann Bot 99:3–8

    Article  CAS  PubMed  Google Scholar 

  • Delaunois B, Colby T, Belloy N, Conreux A, Harzen A, Baillieul F, Clément C, Schmidt J, Jeandet P, Cordelier S (2013) Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes. BMC Plant Biol 13:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Deutsch JC (2000) Dehydroascorbic acid. J Chromatogr A 881:299–307

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Barba-Espín G, Clemente-Moreno MJ, Hernández JA (2010) Characterization of the antioxidant system during the vegetative development of pea plants. Biol Plant 54:76–82

    Article  CAS  Google Scholar 

  • Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione-linking cell proliferation to oxidative stress. Free Radic Bio Med 89:1154–1164

    Article  CAS  Google Scholar 

  • Dietz K-J (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21:1356–1372

    Article  CAS  PubMed  Google Scholar 

  • Dietz K-J (2016) Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol Cells 39:20–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709

    Article  CAS  PubMed  Google Scholar 

  • Doke N (1985) NADPH-dependent O2 •− generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27:311–322

    Article  CAS  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  CAS  PubMed  Google Scholar 

  • Drazkiewicz M, Skórzyńska-Polit E, Krupa Z (2003) Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana (L.) Plant Sci 164:195–202

    Article  CAS  Google Scholar 

  • Du J, Cullen JJ, Buettner GR (2012) Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta 1826:443–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Wagner BA, Buettner GR, Cullen JJ (2015) Role of labile iron in the toxicity of pharmacological ascorbate. Free Radic Biol Med 84:289–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan M, Ma NN, Li D, Deng YS, Kong FY, Lv W, Meng QW (2012) Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiol Biochem 58:37–45

    Article  CAS  PubMed  Google Scholar 

  • Dumville JC, Fry SC (2003) Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217:951–961

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Faize M, Nicolás E, Faize L, Díaz-Vivancos P, Burgos L, Hernández JA (2015) Cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco. Theor Exp. Plant Physiol 27:215–226

    CAS  Google Scholar 

  • Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450

    Article  CAS  PubMed  Google Scholar 

  • Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fecht-Christoffers MM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol Plant 117:237–244

    Article  CAS  Google Scholar 

  • Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM (2015) The AlkB family of Fe (II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem 290:20734–20742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreres F, Figueiredo R, Bettencourt S, Carqueijeiro I, Oliveira J, Gil-Izquierdo A, Pereira DM, Valentão P, Andrade PB, Duarte P, Barceló AR (2011) Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair? J Exp Bot 62:2841–2854

    Article  CAS  PubMed  Google Scholar 

  • Fortes AM, Gallusci P (2017) Plant stress responses and phenotypic plasticity in the epigenomics era: perspectives on the grapevine scenario, a model for perennial crop plants. Front Plant Sci 8:82. https://doi.org/10.3389/fpls.2017.00082

    PubMed  PubMed Central  Google Scholar 

  • Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot 59:729–737

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplast; a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ 39:951–964

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organization of Arabidopsis leaves. Plant J 33:691–705

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (2013) L-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica 2013:795964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Mullineaux PM (2009) The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 21:2143–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138–148

    Article  CAS  PubMed  Google Scholar 

  • Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J 30:541–553

    Article  CAS  PubMed  Google Scholar 

  • Gechev T, Willekens H, Van Montagu M, Inzé D, Van Camp W, Toneva V, Minkov I (2003) Different responses of tobacco antioxidant enzymes to light and chilling stress. J Plant Physiol 160:509–515

    Article  CAS  PubMed  Google Scholar 

  • Gergoff G, Chaves A, Bartoli CG (2010) Ethylene regulates ascorbic acid content during dark-induced leaf senescence. Plant Sci 178:207–212

    Article  CAS  Google Scholar 

  • Gest N, Gautier H, Stevens R (2012) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53

    Article  PubMed  CAS  Google Scholar 

  • Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol 141:685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacomelli L, Masi A, Ripoll DR, Lee MJ, van Wijk KJ (2007) Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol Biol 65:627–644

    Article  CAS  PubMed  Google Scholar 

  • Gillham DJ, Dodge AD (1986) Hydrogen-peroxide-scavenging systems within pea chloroplasts. Planta 167:246–251

    Article  CAS  PubMed  Google Scholar 

  • Giménez MJ, Serrano M, Valverde JM, Martínez-Romero D, Castillo S, Valero D, Guillén F (2017) Preharvest salicylic acid and acetylsalicylic acid treatments preserve quality and enhance antioxidant systems during postharvest storage of sweet cherry cultivars. J Sci Food Agr 97:1220–1228

    Article  CAS  Google Scholar 

  • Gloser V, Korovetska H, Martín-Vertedor AI, Hájíčková M, Prokop Z, Wilkinson S, Davies W (2016) The dynamics of xylem sap pH under drought: a universal response in herbs? Plant and Soil 409:259–272

    Article  CAS  Google Scholar 

  • Golan T, Muller-Moule P, Niyogi KK (2006) Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant Cell Environ 29:879–887

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez E, Brereton NJ, Marleau J, Nissim WG, Labrecque M, Pitre FE, Joly S (2015) Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil. BMC Plant Biol 15:246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Götz M, Albert A, Stich S, Heller W, Scherb H, Krins A, Ernst D (2010) PAR modulation of the UV-dependent levels of flavonoid metabolites in Arabidopsis thaliana (L.) Heynh.leaf rosettes: cumulative effects after a whole vegetative growth period. Protoplasma 243:95–103

    Article  PubMed  CAS  Google Scholar 

  • Green MA, Fry SC (2005) Apoplastic degradation of ascorbate: novel enzymes and metabolites permeating the plant cell wall. Plant Biosyst 139:2–7

    Article  Google Scholar 

  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford Science, Oxford

    Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Heber U, Miyake C, Mano J, Ohno C, Asada K (1996) Monodehydroascorbate radical detected by electron paramagnetic resonance spectrometry is a sensitive probe of oxidative stress in intact leaves. Plant Cell Physiol 37:1066–1072

    Article  CAS  Google Scholar 

  • Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237

    Article  CAS  PubMed  Google Scholar 

  • Heldt HW, Chon CJ, Lorimer GH (1978) Phosphate requirement for the light activation of ribulose-1,5-biphosphate carboxylase in intact spinach chloroplasts. FEBS Lett 92:234–240

    Article  CAS  Google Scholar 

  • Hemavathi, Upadhyaya CP, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330

    Article  CAS  PubMed  Google Scholar 

  • Hernández I, Van Breusegem F (2010) Opinion on the possible role of flavonoids as energy escape valves: novel tools for nature’s Swiss army knife? Plant Sci 179:297–301

    Article  CAS  Google Scholar 

  • Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Müller M, Zechmann B (2013) Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biol 13:104–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hideg É, Vass I (1996) UV-B induced free radical production in plant leaves and isolated thylakoid membranes. Plant Sci 115:251–260

    Article  CAS  Google Scholar 

  • Hideg É, Spetea C, Vass I (1994) Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy. Photosynth Res 39:191–199

    Article  CAS  PubMed  Google Scholar 

  • Hideg É, Mano J, Ohno C, Asada K (1997) Increased levels of monodehydroascorbate radical in UV-B-irradiated broad bean leaves. Plant Cell Physiol 38:684–690

    Article  CAS  Google Scholar 

  • Hideg É, Rosenqvist E, Váradi G, Bornman J, Vincze É (2006) A comparison of UV-B induced stress responses in three barley cultivars. Func. Plant Biol 33:77–90

    CAS  Google Scholar 

  • Hideg É, Jansen MAK, Strid Å (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18:107–115

    Article  CAS  PubMed  Google Scholar 

  • Hocking B, Tyerman SD, Burton RA, Gilliham M (2016) Fruit calcium: transport and physiology. Front Plant Sci 7:569

    Article  PubMed  PubMed Central  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267

    Article  CAS  PubMed  Google Scholar 

  • Horemans N, Raeymaekers T, Van Beek K, Nowocin A, Blust R, Broos K, Cuypers A, Vangronsveld J, Guisez Y (2007) Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium. J Exp Bot 58:4307–4317

    Article  CAS  PubMed  Google Scholar 

  • Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131:317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horváth E, Brunner S, Bela K, Papdi C, Szabados L, Tari I, Csiszár J (2015) Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of A. thaliana. Funct Plant Biol 42:1129–1140

    Google Scholar 

  • Hossain MA, Asada K (1985) Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme. J Biol Chem 260:12920–12926

    CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google Scholar 

  • Hossain MA, Li ZG, Hoque TS, Burritt DJ, Fujita M, Munné-Bosch S (2018) Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255:399–412

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Li H, Chen S, Yang Y (2013) Chlorophyll content and photosystem II efficiency in soybean exposed to supplemental ultraviolet-B radiation. Photosynthetica 51:151–157

    Article  CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    Article  CAS  PubMed  Google Scholar 

  • Huang PY, Catinot J, Zimmerli L (2015) Ethylene response factors in Arabidopsis immunity. J Exp Bot 67:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Huot B, Yao J, Montgomery BL, He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7:1267–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito S, Casalongué CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotech Bioch 72:1143–1154

    Article  CAS  Google Scholar 

  • Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78

    Article  CAS  Google Scholar 

  • Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janiak A, Kwaśniewski M, Szarejko I (2015) Gene expression regulation in roots under drought. J Exp Bot 67:1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Article  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Hernández JA, Del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Jozefczak M, Bohler S, Schat H, Horemans N, Guisez Y, Remans T, Vangronsveld J, Cuypers A (2015) Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium. Ann Bot 116:601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jubany-Mari T, Prinsen E, Munné-Bosch S, Alegre L (2010) The timing of methyl jasmonate, hydrogen peroxide and ascorbate accumulation during water deficit and subsequent recovery in the Mediterranean shrub Cistus albidus L. Environ Exp Bot 69:47–55

    Article  CAS  Google Scholar 

  • Kaiser WM (1979) Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145:377–382

    Article  CAS  PubMed  Google Scholar 

  • Kalbin G, Ohlsson AB, Berglund T, Rydström J, Strid Å (1997) Ultraviolet-B-radiation-induced changes in nicotinamide and glutathione metabolism and gene expression in plants. Eur J Biochem 249:465–472

    Article  CAS  PubMed  Google Scholar 

  • Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, Zhu YJ, Guo TC (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol Plant 57:718–724

    Article  CAS  Google Scholar 

  • Kangasjärvi S, Kangasjärvi J (2014) Towards understanding extracellular ROS sensory and signaling systems in plants. Adv Bot 2014:538946

    Google Scholar 

  • Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala EM, Aro EM, Rintamäki E (2008) Diverse roles for chloroplast stromal and thylakoid bound ascorbate peroxidases in plant stress responses. Biochem J 412:275–285

    Article  PubMed  CAS  Google Scholar 

  • Kärkönen A, Fry SC (2006) Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells. J Exp Bot 57:1633–1644

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  CAS  PubMed  Google Scholar 

  • Kato N, Esaka M (1996) cDNA cloning and gene expression of ascorbate oxidase in tobacco. Plant Mol Biol 30:833–837

    Article  CAS  PubMed  Google Scholar 

  • Kausar R, Hossain Z, Makino T, Komatsu S (2012) Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Mol Biol Rep 39:10573–10579

    Article  CAS  PubMed  Google Scholar 

  • Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343

    Article  CAS  PubMed  Google Scholar 

  • Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier P, Hancock RD, Foyer CH (2011) The transcription factor ABI4 is required for the ascorbic acid–dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. Plant Cell 23:3319–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr JB, Fioletov VE (2008) Surface ultraviolet radiation. Atmos Ocean 46:159–184

    Article  Google Scholar 

  • Kiddle G, Pastori GM, Bernard S, Pignocchi C, Antoniw J, Verrier PJ, Foyer CH (2003) Effects of leaf ascorbate content on defense and photosynthesis gene expression in Arabidopsis thaliana. Antioxid Redox Signal 5:23–32

    Article  CAS  PubMed  Google Scholar 

  • Klem K, Ač A, Holub P, Kovác D, Špunda V, Robson TM, Urban O (2012) Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ Exp Bot 75:52–64

    Article  CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Koffler BE, Polanschütz L, Zechmann B (2014a) Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents. Protoplasma 251:755–769

    Article  CAS  PubMed  Google Scholar 

  • Koffler BE, Luschin-Ebengreuth N, Stabentheiner E, Müller M, Zechmann B (2014b) Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci 227:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramarenko GG, Hummel SG, Martin SM, Buettner GR (2006) Ascorbate reacts with singlet oxygen to produce hydrogen peroxide. Photochem Photobiol 82:1634–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo A, Aono M, Nakajima N, Saji H, Tanaka K, Kondo N (1999) Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana. J Plant Res 112:279–290

    Article  CAS  Google Scholar 

  • Kuchitsu K, Kosaka H, Shiga T, Shibuya N (1995) EPR evidence for generation of hydroxyl radical triggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells. Protoplasma 188:138–142

    Article  CAS  Google Scholar 

  • Kuiper C, Vissers MC (2014) Ascorbate as a cofactor for Fe-and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. Front Oncol 4:359

    PubMed  PubMed Central  Google Scholar 

  • Kukavica B, Veljović-Jovanović S (2004) Senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing. Physiol Plant 122:321–327

    Article  CAS  Google Scholar 

  • Kukavica B, Mojović M, Vučinić Ž, Maksimović V, Takahama U, Veljović-Jovanović S (2008) Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant Cell Physiol 50:304–317

    Article  PubMed  CAS  Google Scholar 

  • Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285

    Article  PubMed  Google Scholar 

  • Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci U S A 104:9534–9539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laing W, Norling C, Brewster D, Wright M, Bulley S (2017) Ascorbate concentration in Arabidopsis thaliana and expression of ascorbate related genes using RNAseq in response to light and the diurnal cycle. BioRxiv 138008.

    Google Scholar 

  • Lallement PA, Roret T, Tsan P, Gualberto JM, Girardet JM, Didierjean C, Rouhier N, Hecker A (2016) Insights into ascorbate regeneration in plants: investigating the redox and structural properties of dehydroascorbate reductases from Populus trichocarpa. Biochem J 473:717–731

    Article  CAS  PubMed  Google Scholar 

  • Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598

    Article  CAS  PubMed  Google Scholar 

  • Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, Luis A (2005) Peroxisomal MDHAR. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139:421–434

    CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179

    Article  CAS  PubMed  Google Scholar 

  • Lidon FJ, Reboredo FH, Leitã AE, Silva MMA, Duarte MP, Ramalho JC (2012) Impact of UV-B radiation on photosynthesis-an overview. Emirates J Food Agric 24:546–556

    Article  Google Scholar 

  • Liebthal M, Maynard D, Dietz K-J (2017) Peroxiredoxins and redox signaling in plants. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7164

  • Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST (2012) MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol 196:427–440

    Article  CAS  PubMed  Google Scholar 

  • Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG (2007) Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J Biol Chem 282:18879–18885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A (2013) Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1, 4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In: In Vitro Cell Dev Biol-Plant, vol 49, pp 643–655

    Google Scholar 

  • Liso R, De Tullio MC, Ciraci S, Balestrini R, La Rocca N, Bruno L, Chiappetta A, Bitonti MB, Bonfante P, Arrigoni O (2004) Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. J Exp Bot 55:2589–2597

    Article  CAS  PubMed  Google Scholar 

  • Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Hermann Muehling K (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 111:457–465

    Article  CAS  PubMed  Google Scholar 

  • López-Carbonell M, Munné-Bosch S, Alegre L (2006) The ascorbate-deficient vtc-1 Arabidopsis mutant shows altered ABA accumulation in leaves and chloroplasts. J Plant Growth Regul 25:137–144

    Article  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell Online 15:165–178

    Article  CAS  Google Scholar 

  • Lucini L, Bernardo L (2015) Comparison of proteome response to saline and zinc stress in lettuce. Front Plant Sci 6:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Luwe M (1996) Antioxidants in the apoplast and symplast of beech (Fagus sylvatica L.) leaves: seasonal variations and responses to changing ozone concentrations in air. Plant Cell Environ 19:321–328

    Article  CAS  Google Scholar 

  • Luwe MW, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59:37–49

    Article  CAS  Google Scholar 

  • Majer P, Hideg É (2012) Existing antioxidant levels are more important in acclimation to supplemental UV-B irradiation than inducible ones: studies with high light pretreated tobacco leaves. Emirates J Food Agric 24:598–606

    Article  Google Scholar 

  • Majer P, Vidović M, Czégény G, Veljović-Jovanović S, Strid Å, Hideg E (2016) Evaluation of procedures for assessing anti- and pro-oxidants in plant samples. Anal Methods 8:5569–5580

    Article  CAS  Google Scholar 

  • Mano JI, Ushimaru T, Asada K (1997) Ascorbate in thylakoid lumen as an endogenous electron donor to photosystem II: protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase. Photosynth Res 53:197–204

    Article  CAS  Google Scholar 

  • Mano JI, Ohno C, Domae Y, Asada K (2001) Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim Biophys Acta 1504:275–287

    Article  CAS  PubMed  Google Scholar 

  • Manohar M, Tian M, Moreau M, Park SW, Choi HW, Fei Z, Friso G, Asif M, Manosalva P, von Dahl CC, Shi K (2015) Identification of multiple salicylic acid-binding proteins using two high throughput screens. Front Plant Sci 5:777

    Article  PubMed  PubMed Central  Google Scholar 

  • Martens S, Preuss A, Matern U (2010) Multifunctional flavonoid dioxygenases: Flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry 71:1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2010) Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol 51:190–200

    Article  CAS  PubMed  Google Scholar 

  • Maruta T, Noshi M, Nakamura M, Matsuda S, Tamoi M, Ishikawa T, Shigeoka S (2014) Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis. Plant Sci 219:61–68

    Article  PubMed  CAS  Google Scholar 

  • Mase K, Ishihama N, Mori H, Takahashi H, Kaminaka H, Kodama M, Yoshioka H (2013) Ethylene-responsive AP2/ERF transcription factor MACD1 participates in phytotoxin-triggered programmed cell death. Mol Plant Microbe Interact 26:868–879

    Article  CAS  PubMed  Google Scholar 

  • Masi A, Trentin AR, Arrigoni G (2016) Leaf apoplastic proteome composition in UV-B treated Arabidopsis thaliana mutants impaired in extracellular glutathione degradation. Data Brief 6:368–377

    Article  CAS  PubMed  Google Scholar 

  • McAdam SA, Brodribb TJ (2016) Linking turgor with ABA biosynthesis: implications for stomatal responses to vapour pressure deficit across land plants. Plant Physiol 171:2008–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13:971–976

    Article  CAS  Google Scholar 

  • Metz B, Davidson O, Bosch P, Dave R, Meyer L (2007) Climate Change Mitigation. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Mielecki D, Zugaj DŁ, Muszewska A, Piwowarski J, Chojnacka A, Mielecki M, Nieminuszczy J, Grynberg M, Grzesiuk E (2012) Novel AlkB dioxygenases—alternative models for in silico and in vivo studies. PLoS One 7:e30588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra K, Ojha H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem 130:1036–1043

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyaji T, Kuromori T, Takeuchi Y, Yamaji N, Yokosho K, Shimazawa A, Sugimoto E, Omote H, Ma JF, Shinozaki K, Moriyama Y (2015) AtPHT4; 4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat Commun 6:5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541–553

    CAS  Google Scholar 

  • Miyake C, Asada K (1994) Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol 35:539–549

    Article  CAS  Google Scholar 

  • Miyake C, Asada K (1996) Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol 37:423–430

    Article  CAS  Google Scholar 

  • Miyake C, Schreiber U, Hormann H, Sano S, Asada K (1998) The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes. Plant Cell Physiol 39:821–829

    Article  CAS  Google Scholar 

  • Mock HP, Dietz K-J (2016) Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim Biophys Acta 1864:967–973

    Article  CAS  PubMed  Google Scholar 

  • Mojović M, Vuletić M, Bačić GG, Vučinić Ž (2004) Oxygen radicals produced by plant plasma membranes: an EPR spin-trap study. J Exp Bot 55:2523–2531

    Article  PubMed  CAS  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau M, Tian M, Klessig DF (2012) Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res 22:1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morina F (2011) Biochemical mechanisms of antioxidative response to excess zinc in Common Mullein (Verbascum thapsus L.): interpopulational differences. PhD thesis, University of Belgrade

    Google Scholar 

  • Morina F, Jovanović LJ, Mojović M, Vidović M, Panković D, Veljović-Jovanović S (2010) Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol Plant 140:209–224

    CAS  PubMed  Google Scholar 

  • Morina F, Milić S, Mojović M, Veljović-Jovanović S (2012) Hydroxyl radical generation and carbon centre depletion in the root cell wall isolate enriched with copper. Proceedings of XI international conference on fundamental and applied aspects of physical chemistry, Belgrade, Serbia, pp 400–402

    Google Scholar 

  • Morina F, Jovanović LJ, Prokić LJ, Veljović-Jovanović S (2016) Physiological basis of differential zinc and copper tolerance of Verbascum populations from metal-contaminated and uncontaminated areas. Environ Sci Pollut Res 23:10005–10020

    Article  CAS  Google Scholar 

  • Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic acid deficiency in Arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mol Plant Microbe Interact 23:340–351

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller-Moulé P, Havaux M, Niyogi KK (2003) Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol 133:748–760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller-Moulé P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol 134:1163–1172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    Article  CAS  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) Interplay between ascorbic acid and lipophilic antioxidant defences in chloroplasts of water-stressed Arabidopsis plants. FEBS Lett 524:145–148

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2003) Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiol 131:1816–1825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Murphy TM, Auh CK (1996) The superoxide synthases of plasma membrane preparations from cultured rose cells. Plant Physiol 110:621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata T, Todoriki S, Masumizu T, Suda I, Furuta S, Du Z, Kikuchi S (2003) Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J Agric Food Chem 51:2992–2999

    Article  CAS  PubMed  Google Scholar 

  • Nagy V, Tengölics R, Schansker G, Rákhely G, Kovács KL, Garab G, Tóth SZ (2012) Stimulatory effect of ascorbate, the alternative electron donor of photosystem II, on the hydrogen production of Chlamydomonas reinhardtii. Int J Hydrogen Energy 37:8864–8871

    Article  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30:865–873

    Article  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Neubauer C, Schreiber U (1989) Photochemical and non-photochemical quenching of chlorophyll fluorescence induced by hydrogen peroxide. Z Naturforsch C 44:262–270

    CAS  Google Scholar 

  • Neubauer C, Yamamoto HY (1992) Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol 99:1354–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Wang Y, Li P, Zhang F, Liu H, Zheng G (2013) Drought stress induces oxidative stress and the antioxidant defense system in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. Acta Physiol Plant 35:1189–1200

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Veljović-Jovanović S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ 39:1140–1160

    Article  CAS  PubMed  Google Scholar 

  • Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S (2016) Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotechnol Biochem 80:870–877

    Article  CAS  PubMed  Google Scholar 

  • Nouchi I, Hayashi K, Hiradate S, Ishikawa S, Fukuoka M, Chen CP, Kobayashi K (2012) Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration-centrifugation method. Plant Cell Physiol 53:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • O’Leary BM, Rico A, McCraw S, Fones HN, Preston GM (2014) The infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example. J Vis Exp 94:52113

    Google Scholar 

  • Oidaira H, Sano S, Koshiba T, Ushimaru T (2000) Enhancement of antioxidative enzyme activities in chilled rice seedlings. J Plant Physiol 156:811–813

    Article  CAS  Google Scholar 

  • Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAP Kinase transcript levels. Environ Exp Bot 83:53–61

    Article  CAS  Google Scholar 

  • Ort DR (2001) When there is too much light. Plant Physiol 125:29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Ozer A, Bruick RK (2007) Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat Chem Biol 3:144–153

    Article  CAS  PubMed  Google Scholar 

  • Page M, Sultana N, Paszkiewicz K, Florance H, Smirnoff N (2012) The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. Plant Cell Environ 35:388–404

    Article  CAS  PubMed  Google Scholar 

  • Parsons HT, Fry SC (2012) Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. Phytochemistry 75:41–49

    Article  CAS  PubMed  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljović-Jovanović S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedreira J, Sanz N, Peña MJ, Sánchez M, Queijeiro E, Revilla G, Zarra I (2004) Role of apoplastic ascorbate and hydrogen peroxide in the control of cell growth in pine hypocotyls. Plant Cell Physiol 45:530–534

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Perez IB, Brown PJ (2014) The role of ROS signaling in cross-tolerance: from model to crop. Front Plant Sci 5:754

    Article  PubMed  PubMed Central  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6:379–389

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol 141:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogson BJ, Woo NS, Forster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609

    Article  CAS  PubMed  Google Scholar 

  • Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polle A, Chakrabarti K, Schürmann W, Renneberg H (1990) Composition and properties of hydrogen peroxide decomposing systems in extracellular and total extracts from needles of Norway spruce (Picea abies L., Karst.) Plant Physiol 94:312–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poór P, Kovács J, Szopkó D, Tari I (2013) Ethylene signaling in salt stress-and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma 250:273–284

    Article  PubMed  CAS  Google Scholar 

  • Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134:1479–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prokić LJ, Morina F, Vidović М, Panković D, Veljović-Jovanović S (2013) Proposed mechanism for drought acclimation in two Verbascum thapsus L. populations differing in metal tolerance. In First international conference on plant biology 20th symposium of the Serbian Plant Society, Subotica, Serbia. Programme and Аbstracts book, p 119

    Google Scholar 

  • Pyngrope S, Bhoomika K, Dubey RS (2013) Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma 250:585–600

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakiere B, Vanacker H, Miginiac-Maslow M, Van Breusegem F, Noctor G (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J 52:640–657

    Article  CAS  PubMed  Google Scholar 

  • Rahantaniaina MS, Li S, Chatel-Innocenti G, Tuzet A, Issakidis-Bourguet E, Mhamdi A, Noctor G (2017) Cytosolic and chloroplastic DHARs cooperate in oxidative stress-driven activation of the salicylic acid pathway. Plant Physiol 174:956–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  PubMed  Google Scholar 

  • Rockholm DC, Yamamoto HY (1996) Violaxanthin de-epoxidase (purification of a 43-kilodalton lumenal protein from lettuce by lipid-affinity precipitation with monogalactosyl diacylglyceride). Plant Physiol 110:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  CAS  PubMed  Google Scholar 

  • Rosa SB, Caverzan A, Teixeira FK, Lazzarotto F, Silveira JA, Ferreira-Silva SL, Abreu-Neto J, Margis R, Margis-Pinheiro M (2010) Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry 71:548–558

    Article  CAS  PubMed  Google Scholar 

  • Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29:269–281

    Article  CAS  PubMed  Google Scholar 

  • Runeckles VC, Vaartnou M (1997) EPR evidence for superoxide anion formation in leaves during exposure to low levels of ozone. Plant Cell Environ 20:306–314

    Article  CAS  Google Scholar 

  • Russell AW, Critchley C, Robinson SA, Franklin LA, Seaton GG, Chow WS, Anderson JM, Osmond CB (1995) Photosystem II regulation and dynamics of the chloroplast D1 protein in Arabidopsis leaves during photosynthesis and photoinhibition. Plant Physiol 107:943–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salinger MJ (2005) Climate variability and change: past, present and future-an overview. Clim Change 70:9–30

    Article  CAS  Google Scholar 

  • Samuni A, Aronovitch J, Godinger D, Chevion M, Czapski G (1983) On the cytotoxicity of vitamin C and metal ions. FEBS J 137:119–124

    CAS  Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50

    Article  Google Scholar 

  • Sang M, Qin XC, Wang WD, Xie J, Chen XB, Wang KB, Zhang JP, Li LB, Kuang TY (2011) High-light-induced superoxide anion radical formation in cytochrome b6f complex from spinach as detected by EPR spectroscopy. Photosynthetica 49:48–54

    Article  CAS  Google Scholar 

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    CAS  PubMed  Google Scholar 

  • Sanmartin M, Pateraki I, Chatzopoulou F, Kanellis AK (2007) Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 225:873–885

    Article  CAS  PubMed  Google Scholar 

  • Saxena I, Srikanth S, Chen Z (2016) Cross-talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570. https://doi.org/10.3389/fpls.2016.00570

    Article  PubMed  PubMed Central  Google Scholar 

  • Schertl P, Sunderhaus S, Klodmann J, Grozeff GEG, Bartoli CG, Braun HP (2012) L-galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of mitochondrial complex I in Arabidopsis thaliana. J Biol Chem 287:14412–14419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin and abscisic acid. Plant Physiol 125:1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutzendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  PubMed Central  Google Scholar 

  • Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632

    Article  CAS  PubMed  Google Scholar 

  • Seminario A, Song L, Zulet A, Nguyen HT, González EM, Larrainzar E (2017) Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants. Front Plant Sci 8:1042. https://doi.org/10.3389/fpls.2017.01042

    Article  PubMed  PubMed Central  Google Scholar 

  • Sewelam N, Kazan K, Thomas-Hall SR, Kidd BN, Manners JM, Schenk PM (2013) Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. PLoS One 8:e70289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 524:2207–2211

    Article  Google Scholar 

  • Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci 178:130–139

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037. https://doi.org/10.1155/2012/217037

    Google Scholar 

  • Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z (2014) Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem 82:209–217

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo SD, Saito K (2011) Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23:1876–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54:39–50

    CAS  PubMed  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multifaceted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (2008) Ascorbate, tocopherol and carotenoids. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Wiley, Chichester, pp 53–86

    Google Scholar 

  • Smirnoff N (2011) Vitamin C: the metabolism and functions of ascorbic acid in plants. Adv Bot Res 59:107–177

    Article  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Tuzio AC, Dichio B, Xiloyannis C (2005) Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Sci 169:403–412

    Article  CAS  Google Scholar 

  • Spasojević I, Bogdanović-Pristov J (2010) The potential physiological implications of polygalacturonic acid-mediated production of superoxide. Plant Signal Behav 5:1525–1529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Springob K, Nakajima JI, Yamazaki M, Saito K (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep 20:288–303

    Article  CAS  PubMed  Google Scholar 

  • Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D, Luo Y, Dion E, Fukui G, Kumazaki A, Nakano R (2016) ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One 11:e0147625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szarka A, Bánhegyi G, Asard H (2013) The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration. Antioxid Redox Signal 19:1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szechyńska-Hebda M, Karpiński S (2013) Light intensity-dependent retrograde signalling in higher plants. J Plant Physiol 170:1501–1516

    Article  PubMed  CAS  Google Scholar 

  • Tabata K, Ôba K, Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase. Plant J 27:139–148

    Article  CAS  PubMed  Google Scholar 

  • Takahama U (2004) Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: physiological significance of the oxidation reactions. Phytochem Rev 3:207–219

    Article  CAS  Google Scholar 

  • Takahama U, Egashira T (1991) Peroxidases in vacuoles of Vicia faba leaves. Phytochemistry 30:73–77

    Article  CAS  Google Scholar 

  • Takahama U, Oniki T (1992) Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol 33:379–387

    CAS  Google Scholar 

  • Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plant 101:845–852

    Article  CAS  Google Scholar 

  • Takahama U, Veljović-Jovanović S, Heber U (1992) Effects of the air pollutant SO2 on leaves inhibition of sulfite oxidation in the apoplast by ascorbate and of apoplastic peroxidase by sulfite. Plant Physiol 100:261–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS (2011) Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 36:163–173

    Article  CAS  PubMed  Google Scholar 

  • Tamás L, Bočová B, Huttová J, Mistrík I, Ollé M (2006) Cadmium-induced inhibition of apoplastic ascorbate oxidase in barley roots. Plant Growth Regul 48:41–49

    Article  CAS  Google Scholar 

  • Tenhaken R (2014) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771

    PubMed  Google Scholar 

  • Thomas CE, McLean LR, Parker RA, Ohlweiler DF (1992) Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. Lipids 27:543–550

    Article  CAS  PubMed  Google Scholar 

  • Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449

    Article  PubMed  PubMed Central  Google Scholar 

  • Torabinejad J, Donahue JL, Gunesekera BN, Allen-Daniels MJ, Gillaspy GE (2009) VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol 150:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth SZ, Puthur JT, Nagy V, Garab G (2009) Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen-evolving complexes. Plant Physiol 149:1568–1578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tóth SZ, Nagy V, Puthur JT, Kovács L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156:382–392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Triantaphylidès C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turnbull JJ, Nakajima JI, Welford RW, Yamazaki M, Saito K, Schofield CJ (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis anthocyanidin synthase, flavonol synthase, and flavanone 3β-hydroxylase. J Biol Chem 279:1206–1216

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW (2011a) Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33:2297

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya CP, Akula N, Kim HS, Jeon JH, Ho OM, Chun SC, Kim DH, Park SW (2011b) Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing D-galacturonic acid reductase gene in response to various abiotic stresses. Mol Breed 28:105–115

    Article  CAS  Google Scholar 

  • Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-O2-synthase from other NAD(P)H oxidoreductases. Plant Physiol 115:543–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanacker H, Harbinson J, Ruisch J, Carver TLW, Foyer CH (1998) Antioxidant defences of the apoplast. Protoplasma 205:129–140

    Article  CAS  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58

    Article  CAS  PubMed  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veljović-Jovanović S (1998) Active oxygen species and photosynthesis: Mehler and ascorbate peroxidase reactions. Iugosl Physiol Pharmacol Acta 34:503–522

    Google Scholar 

  • Veljović-Jovanović S, Oniki T, Takahama U (1998) Detection of monodehydroascorbic acid radical in sulfite-treated leaves and mechanism of its formation. Plant Cell Physiol 39:1203–1208

    Article  Google Scholar 

  • Veljović-Jovanović S, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127:426–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Veljović-Jovanović S, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507

    Article  Google Scholar 

  • Veljović-Jovanović S, Kukavica B, Cvetić T, Mojović M, Vučinić Ž (2005) Ascorbic acid and the oxidative processes in pea root cell wall isolates: characterization by fluorescence and EPR spectroscopy. Ann N Y Acad Sci 1048:500–504

    Article  PubMed  CAS  Google Scholar 

  • Vidović M, Morina F, Milić S, Albert A, Zechmann B, Tosti T, Winkler JB, Veljović-Jovanović S (2015a) Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiol Biochem 93:44–55

    Article  PubMed  CAS  Google Scholar 

  • Vidović M, Morina F, Milić S, Zechmann B, Albert A, Winkler JB, Veljović-Jovanović S (2015b) UV-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light. Plant Cell Environ 38:968–979

    Article  PubMed  CAS  Google Scholar 

  • Vidović M, Morina F, Milić-Komić S, Vuleta A, Zechmann B, Lj P, Veljović-Jovanović S (2016a) Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants. Plant Biol 18:669–680

    Article  PubMed  CAS  Google Scholar 

  • Vidović M, Morina F, Lj P, Milić-Komić S, Živanović B, Veljović-Jovanović S (2016b) Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H2O2 in (peri)vascular tissue induced by sunlight and paraquat. J Plant Physiol 206:25–39

    Article  PubMed  CAS  Google Scholar 

  • Vidović M, Morina F, Veljović-Jovanović S (2017) Stimulation of various phenolics in plants under ambient UV-B radiation. In: Singh VP, Singh S, Prasad SM, Parihar P (eds) UV-B Radiation: from environmental stressor to regulator of plant growth. Wiley-Blackwell, Chichester, pp 9–56

    Chapter  Google Scholar 

  • Vojta L, Carić D, Cesar V, Dunić JA, Lepeduš H, Kveder M, Fulgosi H (2015) TROL-FNR interaction reveals alternative pathways of electron partitioning in photosynthesis. Sci Rep 5:10085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuletić M, Hadži-Tašković Šukalović V, Marković K, Kravić N, Vučinić Ž, Maksimović V (2014) Differential response of antioxidative systems of maize (Zea mays L.) roots cell walls to osmotic and heavy metal stress. Plant Biol 16:88–96

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400–409

    Article  CAS  PubMed  Google Scholar 

  • Wang HS, Yu C, Zhu ZJ, Yu XC (2011) Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity. Plant Cell Rep 30:1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Cui X, Sun Y, Dong CH (2013) Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 32:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G (2015) Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci 6:458

    PubMed  PubMed Central  Google Scholar 

  • Weijers D, Wagner D (2016) Transcriptional responses to the auxin hormone. Annu Rev Plant Biol 67:539–574

    Article  CAS  PubMed  Google Scholar 

  • Weisiger RA, Fridovich I (1973) Mitochondrial superoxide dismutase site of synthesis and intramitochondrial localization. J Biol Chem 248:4793–4796

    CAS  PubMed  Google Scholar 

  • Westphal S, Wagner E, Knollmüller M, Loreth W, Schuler P, Stegmann HB (1992) Impact of aminotriazole and paraquat on the oxidative defence system of spruce monitored by monodehydroascorbic acid. Z Naturforsch C 47:567–572

    CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16:4806–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolucka BA, Goossens A, Inzé D (2005) Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 56:2527–2538

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X (2012a) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–219

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C (2012b) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, JQ Y (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xie R, Zhang J, Ma Y, Pan X, Dong C, Pang S, He S, Deng L, Yi S, Zheng Y, Lv Q (2017) Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots. Sci Rep 7:42094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing X, Zhou Q, Xing H, Jiang H, Wang S (2016) Early abscisic acid accumulation regulates ascorbate and glutathione metabolism in soybean leaves under progressive water stress. J Plant Growth Regul 35:865–876

    Article  CAS  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, You J, Ou Y, Ma J, Wu X, Xu G (2015) Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds. Plant Physiol Biochem 90:23–31

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, He RJ, Xie QL, Song L, He J, Marchant A, Chen XY, AM W (2017) ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol 213:1667–1681

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, Inupakutika MA, Mittler R (2016) ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot 67:5381–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmann B (2014) Compartment specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 5:566

    Article  PubMed  PubMed Central  Google Scholar 

  • Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2013) Biological role of ascorbate in plants. In: Zhang Y (ed) Ascorbic acid in plants. Springer, New York, pp 7–33

    Chapter  Google Scholar 

  • Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Smith JAC, Harberd NP, Jiang C (2016) The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol Biol 91:651–659

    Article  CAS  PubMed  Google Scholar 

  • Zipor G, Oren-Shamir M (2013) Do vacuolar peroxidases act as plant caretakers? Plant Sci 199:41–47

    Article  PubMed  CAS  Google Scholar 

  • Zoeller M, Stingl N, Krischke M, Fekete A, Waller F, Berger S, Mueller MJ (2012) Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol 160:365–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zörb C, Geilfus CM, Mühling KH, Ludwig-Müller J (2013) The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J Plant Physiol 170:220–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (Project No. III43010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Veljović-Jovanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veljović-Jovanović, S., Vidović, M., Morina, F. (2017). Ascorbate as a Key Player in Plant Abiotic Stress Response and Tolerance. In: Hossain, M., Munné-Bosch, S., Burritt, D., Diaz-Vivancos, P., Fujita, M., Lorence, A. (eds) Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-74057-7_3

Download citation

Publish with us

Policies and ethics